
HPE iLO IPMI User Guide

Part Number: 882431-001
Published: July 2017
Edition: 1

Abstract
AbstractThis document provides customers with information on the implementation of the
Intelligent Platform Management Interface in HPE iLO, including the available commands.



© Copyright 2014, 2017 Hewlett Packard Enterprise Development LP

The information contained herein is subject to change without notice. The only warranties for Hewlett Packard
Enterprise products and services are set forth in the express warranty statements accompanying such
products and services. Nothing herein should be construed as constituting an additional warranty. Hewlett
Packard Enterprise shall not be liable for technical or editorial errors or omissions contained herein.

Confidential computer software. Valid license from Hewlett Packard Enterprise required for possession, use,
or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

Links to third-party websites take you outside the Hewlett Packard Enterprise website. Hewlett Packard
Enterprise has no control over and is not responsible for information outside the Hewlett Packard Enterprise
website.



Contents

Introduction and key concepts...................................................................6
Overview..............................................................................................................................................6
Key concepts.......................................................................................................................................6
Sensor Data Model..............................................................................................................................6

Sensor owner identification.......................................................................................................7
Sensor type code......................................................................................................................7
Sensor Number and Naming Conventions ..........................................................................8
System event log and event messages....................................................................................8
SDR repository....................................................................................................................... 10

FRU................................................................................................................................................... 11
Standardized timers...........................................................................................................................12

Watchdog timer.......................................................................................................................12
POH counter...........................................................................................................................12
Timestamp format...................................................................................................................12

iLO security modes............................................................................................................................13
Interoperability modes....................................................................................................................... 13

IPMI Topology.............................................................................................15

Discovering managed entities using IPMITool........................................20

IPMItool.......................................................................................................21
Out of band commands..................................................................................................................... 21
About interface types.........................................................................................................................22

System Interface.....................................................................................................................22
LANPlus Interface...................................................................................................................22

Features............................................................................................................................................ 23
Events................................................................................................................................................24
Inventory............................................................................................................................................24
Chassis management........................................................................................................................25
Synopsis............................................................................................................................................25
IPMItool Raw command syntax and example................................................................................... 27

Command specification............................................................................ 29
Standard command specification...................................................................................................... 30

Global commands...................................................................................................................30
IPMI messaging support commands...................................................................................... 38
RMCP+ support and payload commands...............................................................................85
IPMI LAN Device Commands...............................................................................................101
SOL commands....................................................................................................................126
MC watchdog timer commands............................................................................................ 131
Chassis commands.............................................................................................................. 139
Event commands..................................................................................................................153
PEF and Alerting commands................................................................................................156
SEL commands.................................................................................................................... 175

Contents 3



SDR repository device commands....................................................................................... 182
FRU inventory device commands.........................................................................................190
Sensor Device Commands...................................................................................................192
DCMI specific commands.....................................................................................................204
OEM commands...................................................................................................................217

IPMI Messaging and Interfaces.............................................................. 224
System Interfaces............................................................................................................................224

Message interface description..............................................................................................224
IPMI Messaging Interfaces................................................................................................... 225

Network function codes................................................................................................................... 225
Completion codes............................................................................................................................226
Channel Model, Authentication, Sessions, and Users.....................................................................229

Channel numbers................................................................................................................. 229
Logical channels...................................................................................................................230
Channel Privilege Levels...................................................................................................... 230
Users & Password support................................................................................................... 231
IPMI sessions....................................................................................................................... 231
Session-less connections..................................................................................................... 232
Session inactivity timeouts....................................................................................................232

System interface messaging........................................................................................................... 232
Bridging........................................................................................................................................... 233

MC LUN 10b.........................................................................................................................233
Send Message command with response tracking................................................................ 234
Bridged Request Example....................................................................................................234
IPMB access via master write-read command..................................................................... 237
MC IPMB LUNs.................................................................................................................... 237
Sending Messages to IPMB from system software.............................................................. 237

Keyboard Controller Style Interface.................................................................................................238
KCS Interface/MC LUNs.......................................................................................................238
KCS Interface-MC Request message format....................................................................... 239
MC-KCS Interface Response Message format.....................................................................239

LAN Interface...................................................................................................................................240
LAN alerting..........................................................................................................................240
IPMI LAN interface................................................................................................................240
Remote Management Control Protocol (RMCP).................................................................. 241

Serial Over LAN (SOL)....................................................................................................................243

Support and other resources................................................................. 245
Accessing Hewlett Packard Enterprise Support..............................................................................245
Accessing updates.......................................................................................................................... 245
Hewlett Packard Enterprise authorized resellers.............................................................................245
Related information......................................................................................................................... 246
Websites..........................................................................................................................................246
Customer self repair........................................................................................................................ 247
Remote support...............................................................................................................................247
Documentation feedback.................................................................................................................247

Command Assignments..........................................................................248

Verbose output examples....................................................................... 255

4 Contents



DCTS (DCMI Conformance Test Suite).................................................. 288
Steps to run the DCTS over LAN Interface..................................................................................... 288

Userconf.cfg..........................................................................................................................288
DCMIConformance.exe ....................................................................................................... 288

Known Issues or Limitations............................................................................................................289
Request with Responder’s Address as ‘0’............................................................................ 289

OCMI Conformance Test Summary (DCMI v1.1 rev 2)................................................................... 290

Glossary................................................................................................... 294

Standard sensor list................................................................................ 298
Sensor LUN O................................................................................................................................. 298
Sensor LUN 1.................................................................................................................................. 311
FRU LUN 0......................................................................................................................................317
FRU LUN 1......................................................................................................................................327
ChassisMC Sensor LUN 0...............................................................................................................340
RAIDMC Sensor LUN 0...................................................................................................................349

Contents 5



Introduction and key concepts

Overview
The term Intelligent Platform Management (IPMI), refers to autonomous monitoring and recovery features
implemented directly in platform management hardware and firmware. The key characteristics of IPMI are
available independently of the main processors, BIOS, and operating system. These characteristics include:

• Inventory
• Monitoring
• Logging
• Recovery control

Platform management functions are available even when the system is in a powered down state.

IPMI capabilities are a key component in providing enterprise-class management for HA systems. Platform
status information is obtained and recovery actions initiated in situations where system management software
and normal in-band management mechanisms are unavailable.

The independent monitoring, logging, and access functions available through IPMI provide a level of
manageability built-in to the platform hardware. This manageability supports systems with no system
management software available for the particular operating system, or the end user who elects not to load or
enable the system management software.

Key concepts
• Sensor Data Model
• FRU
• Standardized timers
• iLO security modes
• Interoperability modes

Sensor Data Model
The IPMI Sensor Model provides access to monitored information including:

• Temperatures
• Power supplies
• Fan status
• Power
• CPU utilization

Instead of providing direct access to the monitoring hardware, IPMI provides access by abstracted sensor
commands, such as the Get Sensor Reading command, implemented via a management controller. This
approach isolates software from changes in the platform management hardware implementation. Sensors
return analog or discrete readings and events are either discrete or threshold-based. Sensors are classified
according to:

• Type of reading/event
• Type of sensor
• Type of entity

Event types, sensor types, and monitored entities are represented using numeric codes defined in the IPMI
specification. IPMI avoids reliance on strings for management information and using numeric codes facilitates:

6  Introduction and key concepts



• Internalization
• Automated handling by higher-level software
• Reduces management controller code and data space requirements

Sensor owner identification

A particular Sensor Data Record (SDR) within the Sensor Data Record Repository (SDRR) and a particular
event within the Sensor Event Log (SEL) must contain information to identify the owner of the sensor. For
management controllers, a slave address, LUN, and channel number identify the owner of a sensor. For
system software, a software ID identifies the sensor owner. These fields are used in event messages, where
events from management controllers are identified by an 8-bit field where the upper 7 bits represent the slave
address or the system software ID. The least significant bit is 0 if the value represents a slave address and 1
if the value represents a system software ID.

The sensor number is not part of the sensor Owner ID, but is a separate field used to identify a sensor
associated with the sensor owner. This combination of sensor owner ID and sensor number uniquely identify
a sensor in the system.

Table 1: Sensor owner ID and sensor number field definition

IPMB Sensor Owner ID System Sensor Owner ID

7:1 slave address (7 bits)

0 0b (ID is a slave address)

system software ID (7 bits)

0 1b (ID is a software ID)

LUN (2 bits) sensor number (8 bits, FFh = reserved)

channel number (4 bits)

sensor number (1 bit, FFh = reserved)

Sensor type code
Each sensor has a sensor type code and are defined in the following table. Sensor type codes are used in
SDRs and event messages. An example of a sensor type code is code 0x1, which indicates a temperature
sensor.

Table 2: Some HPE iLO sensor type codes

Sensor type Sensor type code Reading type code

Temperature 0x1 0x1

Fan 0x4 0xA

Fan redundancy 0x4 0xB

Health LED 0x18 0x07

UID LED 0xC0 0x70

Table Continued

Sensor owner identification 7



Sensor type Sensor type code Reading type code

Power supply 0x8 0x6F

Power supply redundancy 0x8 0xB

For a complete listing of sensor type codes, see the IPMI specification available at:

http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-intelligent-platform-mgt-interface-
spec-2nd-gen-v2-0-spec-update.html

Sensor Number and Naming Conventions
In order to facilitate customer scripts, iLO has allowed for consistent sensor numbering of most sensors.
Additionally, iLO allows for two types of naming conventions:

• Legacy - This mode utilizes the standard ProLiant naming convention. For temperature sensors, this would
be formatted as "<Sensor Number> <Description>".

• Programmatic - This mode utilizes SensorType_ReadingUnits_Instance.

The naming convention mode can be changed on iLO utilizing an OEM ipmi command.

See appendix for number allocations and naming conventions.

System event log and event messages
The BMC provides a centralized, nonvolatile SEL. Having the SEL and logging functions managed by the
BMC helps ensure that post-mortem logging information is available if a failure occurs that disables the
system processors.

A set of IPMI commands allows the SEL to be read and cleared, and for events to be added to the SEL. The
common request message used for adding events to the SEL is an event message. Event messages are sent
to the BMC through the system interface by system software or the IPMB by satellite controllers that detect
events and log them in to the SEL. The controller that generates an event message to another controller
through IPMB is the IPMB Event Generator. The controller receiving event messages is the IPMB Event
Receiver.

The BMC can be considered an IPMB event generator where it sends itself events on its own internal (virtual)
IPMB.

Event messages are special messages sent by management controllers when they detect significant or
critical system management events. This includes messages for events, such as:

• temperature threshold exceeded
• fan failure
• power fault
The event message generator notifies the system by sending an Event Request Message to the event
receiver device.

When the event receiver gets a valid event message, it sends a response message to the event message
generator and transfers the event to the SEL. The event receiver does not interpret event messages so that
new event message types can be added into the system without impacting event receiver implementation.

iLO provides 256 SEL entries and two modes of SEL operation. The modes of operation can be switched
using an OEM IPMI command. The default mode is auto-rollover.

8  Sensor Number and Naming Conventions



• Auto-Rollover - This allows for the oldest event entry to be flushed in order
to make room for a new entry. This mode is referred to in the DCMI
specification.

• IPMI Compliant – This mode drops the newest events in favor of keeping the
already retained events when the SEL is full.

Table 3: SEL event records

Byte Field Description

1

2

Record ID ID used for SEL record access. The Record ID values 0000h and FFFFh
have special meaning in the Even Access commands and must not be used
as Record ID values for stored SEL event records.

3 Record type [7:0]—Record type

02h = system event record

C0h-DFh = OEM timestamped, bytes 8–16 OEM defined

E0h-FFh = OEM nontimestamped, bytes 4–16 OEM defined

4

5

6

7

Timestamp Time when event was logged. LS byte first.

8

9

Generator ID RqSA and LUN if event was generated from IPMB. Software ID if event was
generated from system software.

Byte 1

[7:1]—7–bit I2C. Slave address, or 7–bit system software ID

[0] 0b = ID is IPMB slave address

1b = System software ID

Byte 2

[7:4]—Channel number. Channel that received the event message 0h if the
event message was received via the system interface, primary IPMB, or
internally generated by the BMC.

[3.2]—Reserved. Write as 00b.

[1.0]—IPMB device LUN if byte 1 holds slave address, otherwise 00b.

10 EvM Rev Event message-format version (=04h for events in this specification, 03h for
IPMI v1.0 event messages).1

11 Sensor type Sensor Type Code for sensor that generated the event.

12 Sensor # Number of sensors that generated the event.

Table Continued

Introduction and key concepts 9



Byte Field Description

13 Event dir 1

Event type

Event dir

[7]—0b = Assertion event.

1b = Deassertion event.

Event type

Type of trigger for the event, such as, a critical threshold going high or state
asserted. This parameter also indicates class of the event. Example:
discrete, threshold, or OEM. The event type field is encoded using the event/
reading type code.

14 Event data 1 Event request message, event data field contents.

15 Event data 2 Event request message, event data field contents.

16 Event data 3 Event request message, event data field contents.

1 The BMC must accept platform event request messages that are in IPMI v1.0 format (EvM Rev=03h) and
log them as IPMI v1.5/v2.0 records by setting the EVMRev field to 04h and setting the channel number in
the Generator ID field appropriately for the channel that received the event.

SDR repository
With the extensibility and scalability of IPMI, each platform implementation can have a different population of
management controllers and sensors, and different event generation capabilities. IPMI allows system
management software to retrieve information from the platform and automatically configure itself to the
capabilities of the platform, enabling the use of plug and play, platform-independent instrumentation software.

Information that describes the platform management capabilities is provided by two mechanisms:

• Capability commands—Commands within the IPMI command set that return information on other
commands and functions that the controller can handle.

• SDRs—Contain information about the type and number of sensors in the platform, sensor threshold
support, event generation capabilities, and sensor type readings.

The primary purpose of SDRs is to describe the sensor configuration of the platform management subsystem
to system software. SDRs also include records describing the number and type of devices connected to the
IPMB of the system and records that describe the location and type of FRU Devices (devices that contain field
replaceable unit information).

SDR formats
The general SDR format consists of three major components:

• Record header
• Record key fields
• Record body

To save space, sensors that only generate events do not require SDRs, in addition, generic system
management software does not access sensors unless they are reported by SDRs.

10  SDR repository



Table 4: Sensor data record formats

Record header Record Key fields Record body

Record ID—Used for accessing
sensor data records.

The record key bytes are the
contiguous bytes following the
record header. The number of
bytes vary according to record
type. Together, they make up a set
of unique fields for a given record
specifying location (for example,
slave address, LUN and Bus ID)
and sensor number.

Contains specific information to
the sensor data record.

SDR version—Version number of
the SDR specification.

Record type—Number
representing the type of record.
For example, 01h = 8–bit sensor
with thresholds.

Record length—Number of bytes
of data following the record length
field.

Reading the SDR repository
An application that retrieves records from the SDR repository must first read them sequentially using the Get
SDR command. This command returns the requested record and the record ID of the next SDR in the
sequence.

NOTE:

Record IDs are not required to be sequential or consecutive and applications should not assume that
SDR record IDs follow any particular numeric ordering.

Retrieve succeeding records by issuing the Get SDR command using the next record ID returned in the
previous response. This is continued until the End of Record ID is encountered.

After all the desired records have been read, the application can randomly access the records according to
their Record ID. An application that seeks to access records randomly must save a data structure that retains
the record key information according to the Record ID.

IMPORTANT:

Record IDs can change with time; it is important for applications to first verify that the Record Key
information matches the record retrieved.

If the Record ID is no longer valid for a Record Key, then, access the SDR records again as, by issuing Get
SDR until the record matches the Record ID.

An application can tell if records have changed by examining the most recent addition timestamp using the 
Get SDR repository info command.

If the record information has changed, an application does not need to list out the entire contents of all
records. The Get SDR command allows a partial read of the SDR; an application can search for a given
Record Key by just retrieving that portion of the record.

FRU
The IPMI specifications include support for storing and accessing multiple sets of nonvolatile FRU data for
different modules in the system. An enterprise-class system typically has FRU information for each major
system board such as:

Reading the SDR repository 11



• System Baseboard
• Adapters
• Storage Controllers
• Memory modules

FRU data includes:

• Serial number
• Part number
• Model
• Asset tag

IPMI FRU information is accessible through the IPMB and management controllers. The information can be
retrieved at any time, independent of the main processor, BIOS, system software, or OS, through out-of-band
interfaces, such as the LAN. FRU information is still available when the system is powered down.

With these capabilities FRU information is available under failure conditions when access mechanisms that
rely on the main processor are unavailable. This facilitates the creation of automated remote inventory and
service applications. IPMI does not seek to replace other FRU or inventory data mechanisms such as those
provided by SM BIOS and PCI vital product data. Rather, IPMI FRU information is used to complement that
information or provide information access out-of-band or under system down conditions.

Standardized timers

Watchdog timer
IPMI provides a standardized interface for a system watchdog timer that can also be used for BIOS, operating
system, and OEM applications. The timer can be configured to automatically generate selected actions when
it expires; including power off, power cycle, reset, and interrupt. The timer function automatically logs the
expiration event. Setting 0 for the timeout interval result causes the timeout action to be initiated immediately.
This provides a means for devices on the IPMB, such as remote management cards, to use the watchdog
timer to initiate emergency reset and other recovery actions dependent on the capability of the timer.

POH counter
The optional power-on hours (POH) counter is supported and returns a counter value proportional to the
system operating power-on hours.

Timestamp format
A timestamp is a key component of event logging and tracking changes to the SDRs and the SDRR.

Time is an unsigned, 32–bit value representing the local time as the number of seconds from
00:00:00,January 1, 1970.

The timestamps used for SDR and SEL records are specified in relative local time (for example, the difference
between the timestamp does not include the GMT offset). Converting the timestamp to a GMT-based time
requires adding the GMT offset for the system and is obtained from system software level interfaces. IPMI
commands do not store or return GMT offset for the system. Applications can use ANSI C time standard
library routines for converting the SEL timestamp into other time formats.

Special timestamp values

• 0xFFFFFFFF
—Indicates an invalid or unspecified time value.

• 0x00000000
through

12  Standardized timers



0x20000000
—Indicates events that occur after initialization of the SEL device up to when the timestamp is set with the
system time value. These timestamp values are relative to the completion of the SEL devices initialization,
and not to January 1, 1970.

iLO security modes
• Production

The default state of the server when received by the customer. The network interface is secure, but the
host interface is open. This allows iLO to be compatible with existing Gen 9 software. In this mode, the
IPMI over LAN UDP port is disabled by default due to known security issues inherent to 2.0 sessions. The
IPMI over LAN port can be enabled through IPMI, Redfish, or Web GUI if needed.

• High security

In the high security state, iLO is secure on the network and on the host interface. Encryption and
authentication on the host interface differentiates this mode from production mode. FIPS-level
cryptography is required on the network interface. The high security state is intended for customers who
require high security, but do not need the restrictions imposed by FIPS and the Suite B modes. In this
mode, the IPMI over LAN UDP port is disabled by default due to known security issues inherent to 2.0
sessions. Additionally, IPMI over the system interface is limited to user level commands and a few
additional operator level commands required by OS IPMI infrastructures.

• FIPS

This security mode is intended to meet the security requirements outlined FIPS 140-2 level 1 and
Common Criteria. When in FIPS Validated mode, interfaces that do not meet FIPS requirements are shut
off or restricted. These include SNMP v1 and IPMI. iLO is required to be in FIPS Validated mode when
operating in accordance with its Common Criteria certificate. In this mode, the IPMI over LAN UDP port is
disabled by default due to known security issues inherent to 2.0 sessions. Additionally, IPMI over the
system interface is limited to user level commands and a few additional operator level commands required
by OS IPMI infrastructures.

• CNSA

This mode is intended to meet the requirements of FIPS 140-2 level 1, Common Criteria, and CNSA (ex-
NSA Suite B for Secret and Top Secret installations). In all other respects it is the same as FIPS mode.

Interoperability modes
• HPE Open

Allows improved interoperability with IPMI open source tools. HPE open mode specifically utilizes the new
HPE IANA. This enables customers to easily identify the open mode products and allow open source tools
to automatically avoid the extensions done for legacy HP products. This is the default mode for iLO.

◦ Utilizes HPE IANA.
◦ Utilizes compact sensor records for discrete sensors.
◦ Combined sensors (Discretes with additional analog readings) are disabled. Separate sensors for

analog readings and discrete readings.
◦ Fan sensors use reading type of 0x07 Severity.
◦ Disabled OEM health sensor in favor of utilizing standard health with reading type of 0x07 Severity.

• Legacy

Provides compatibility for customer scripts written for previous generations. Legacy mode specifically
utilizes the HPE IANA to remain compatible with existing scripts and open source tool extensions.

◦ Utilizes HP IANA
◦ Utilizes full sensor records for discrete sensors
◦ Combined sensors (Discretes with additional analog readings) are enabled.

iLO security modes 13



◦ Fan sensors use reading type of 0x0A Availability.
◦ OEM health sensor enabled.

• HPE Open and Legacy modes can be switched by utilizing the following scripts or through utilizing the
individual IPMI commands listed later in the manual.

Usage: hpe-open-mode.sh [-5|--ipmi1.5-enable][-e|--udp-lan-enable]
                        [-n|--no-ilo-reset][-s|--sensor-names-programmatic]
                        [-v|--verbose][-q|--quiet][-l <file>|--log=<file>]
                        [-h|-?|--help][-V|--version]

• The HPE Open mode allows for enablement of 1.5 as well as the 2.0 IPMI over lan sessions. Sensor
naming can be either legacy or programmatic in this mode.

Usage: hpe-legacy-mode.sh [-5|--ipmi1.5-enable][-d|--udp-lan-disable]
                          [-n|--no-ilo-reset][-v|--verbose][-q|--quiet]
                         [-l <file>|--log=<file>]
                          [-h|-?|--help] [-V|--version]

14 Introduction and key concepts



IPMI Topology

Figure 1: HPE iLO virtual IPMI topology

The following table summarizes the various functions available for each virtual management controller type.

Table 5: HPE iLO Virtual Management Controller functions

Function Description Applicable Virtual Management Controller

BMC Chassis Power Supply

IPM Device The BMC must implement the
mandatory IPM Device commands. If
an IPMB is provided, the mandatory
commands must be accessible from
the IPMB unless otherwise noted.

x x x

System Interface The implementation must provide MC
access via one of the specified IPMI
system interfaces.

x

Table Continued

IPMI Topology 15



Function Description Applicable Virtual Management Controller

BMC Chassis Power Supply

SDRR The BMC must provide a SDRR to
hold Sensor, Device Locator and
Entity Association records for all
sensors in the platform management
subsystem. This does not need to
include SDRs for sensors that only
generate events. If the SDRR is
writable, Hewlett Packard Enterprise
recommend that at least 20%
additional space is provided for add-
in platform management extensions.

The SDRR must be accessible
through the system interface. If an
IPMB is provided, the SDRR must be
readable via that interface as well.
SDR update via the IPMB interface is
optional.

SDRR access when the system is
powered up or in ACPI S1 sleep is
mandatory, but access when the
system is powered down or in a >S1
sleep state is optional.

x

IPMB Interface Hewlett Packard Enterprise
recommends the IPMB, but optional.
The BMC must provide the system
interface to the IPMB. If an IPMB is
implemented, at least one of the
specified IPMB connectors must be
provided. Refer to the IPMB Protocol
specification for connector definition.
In addition the BMC must implement
a message channel that allows
messages to be sent from the IPMB
to the system interface, and vice-
versa, and any other mandatory
IPMB support functions and
commands.

x x x

Watchdog Timer The BMC must provide the
standardized Watchdog Timer
interface, with support for system
reset action. Certain functions within
the Watchdog Timer are optional. For
more information, see Watchdog
timer on page 12.

x

Table Continued

16 IPMI Topology



Function Description Applicable Virtual Management Controller

BMC Chassis Power Supply

Event Receiver The BMC must implement an Event
Receiver function and accept Event
Messages through the system
interface. If an IPMB is provided, the
Event Receiver function must also
accept Event Messages from the
IPMB. Event Receiver operation
while the system is powered up or in
ACPI S1 sleep is mandatory, but
operation when the system is
powered down or in a >S1 sleep state
is optional.

x

SEL Interface The BMC must provide a System
Event Log interface. The event log
must hold at least 16 entries. SEL
access must be provided through the
system interface. The SEL must be
fully accessible via all mandatory SEL
commands through all supported
interfaces to the BMC whenever the
system is powered up or in ACPI S1
sleep state. SEL read access is
always mandatory whenever the
BMC is accessible, and through any
interface that is operational,
regardless of system power state.

x

FRU Inventory The BMC must provide a logical
Primary FRU inventory device ,
accessible via the Write- and Read
FRU Data commands. The FRU
Inventory Device Info
command must also be supported.
Hewlett Packard Enterprise
recommends that all other
management controllers also provide
a Primary FRU inventory device.
(This was optional in IPMI 1.0.)

x x x

Initialization Agent The initialization agent function is one
where the BMC initializes event
generation and sensors both
internally and on other management
controllers according to initialization
settings stored in the SDR for the
sensor.

x x x

Table Continued

IPMI Topology 17



Function Description Applicable Virtual Management Controller

BMC Chassis Power Supply

Sensors The BMC can provide sensors. A
typical server BMC would provide
sensors for baseboard temperature,
voltage, and chassis intrusion
monitoring.

x x x

Internal Event
Generation

The BMC must generate internal
events for the Watchdog Timer. It is
highly recommended that sensors
generate events to eliminate the need
for system management software to
poll sensors, and to provide post -
mortem failure information in the
SEL. Internal event generation for
sensors is optional, but highly
recommended Hewlett Packard
Enterprise, particularly for
environmental sensors (for example,
temperature and voltage).

x x x

External Event
Generation

The BMC can be designed to accept
the Set Event Receiver command to
allow it to be set as an IPMB Event
Generator and send its event
messages to another management
controller. This would primarily be
used for development and test
purposes.

x x x

LAN Messaging Ability for the BMC to send and
receive IPMI Messaging over LAN

x

LAN Alerting Ability to send an Alert over the LAN x

Table Continued

18 IPMI Topology



Function Description Applicable Virtual Management Controller

BMC Chassis Power Supply

Bridging Support The ability to transfer IPMI request
and response messages between
two interfaces connected to the BMC.

The following support is required if
the corresponding interfaces are
supported:

• LAN <–> IPMB
• LAN <–> System Interface

x x x

Platform Event
Filtering (PEF) and
Alert Policies

Ability for BMC to perform a
selectable action on a n event. This
capability is mandatory if paging or
alerting is supported. Certain actions
within PEF are optional. Refer to the
sections on PEF for information. The
Alert action and Alert Policies are
mandatory if serial/modem or LAN
alerting is supported.

x

IPMI Topology 19



Discovering managed entities using IPMITool
Querying an SDRR from the Baseboard Management Controller

Procedure

1. Enter the
sdr list all
command to show all management controller records.

2. Management controller records

a. Chassis controller—Statically assigned, always should be present. Even though always assigned
address 0x44, record should be parsed to learn address and channel number (IPMB=0).

b. Power supply controllers —Full complement of records always present. Dynamic indication in record
indicates to application that controller may or may not be present. When not present, the controller will
“nack”. Even though always assigned address 0x52-0x58, records should be parsed to learn address
and channel number (IPMB=0).

20  Discovering managed entities using IPMITool



IPMItool
IPMItool is a simple command-line interface to systems that support the IPMI 1.5/2.0 specifications. IPMItool
provides the following:

• Ability to read the SDRR and print sensor values
• Display the contents of the system event log
• Print field replaceable unit information
• Read and set LAN configuration parameters
• Perform remote chassis power control

IPMItool was originally written to take advantage of IPMI-over-LAN interfaces but it is capable of using the
system interface as provided by a kernal device driver such as Open IPMI. IPMItool is available under a BSD
license.

System Management Software is complex and makes platform management only part of a much larger
management picture. However, many system administrators and developers rely on command-line tools that
can be scripted. IPMItool takes a different approach to SMS and provides a completely command-line
oriented tool. Therefore, it is not designed to replace the Open IPMI library. Where possible, it supports
printing comma-separated values for output to facilitate parsing by other scripts or programs. It is designed to
run quick command response functions that can be as simple as turning the system on or off or as complex
as reading in the sensor data records and extracting and printing detailed sensor information for each record.
For example,

root@JSMITH-LX:/# ipmitool -I lanplus -H 15.214.36.129 -U admin -P admin123 sdr 
list mcloc
ChasMgmtCtlr1    | Static MC @ 44h   | ok
PsMgmtCtlr1      | Dynamic MC @ 52h  | ok
PsMgmtCtlr2      | Dynamic MC @ 54h  | ok
PsMgmtCtlr3      | Dynamic MC @ 56h  | ok
PsMgmtCtlr4      | Dynamic MC @ 58h  | ok

Out of band commands
BMC out of band command

All commands to the BMC are directed and o not require any bridging.

Single-bridging out of band command

You must single-bridge out of band commands to reach specific chassis management controller or power
supply management controller to discover management controller addresses.

Enter the sdr list all command at the BMC to discover chassis and power supply management
controller addresses. Once you have these addresses, they can be used to bridge to these additional
controllers. For example:

• Chassis Controller

-b 0 -t 0x44
• Power Supply

Controller 1

-b 0 –t 0x52
• Power Supply

Controller 2

-b 0 –t 0x54

IPMItool 21



Where:

•  -b <ipmi channel number>
•  -t <target slave address>

About interface types
IPMItool supports dynamic loading of interfaces that correspond to low-level communication methods for
accessing IPMI systems. The most common of these are the System Interface provided by the OpenIPMI
Linux kernal driver and IPMI over LAN interfaces.

System Interface
There are multiple types of system interfaces, and they are all similar enough to enable a single driver like
OpenIPMI to support them all. The varieties of system interfaces include KCS, BT, and SSIF. All of these are
supported in recent versions of the OpenIPMI driver for the Linux kernal. IPMItool uses this driver to access
the system interface through a character device node at /dev/ipmi0. To use this interface with IPMItool
provide the -I open parameter on the command line.

iLO supports KCS and a proprietary high-speed interface, CHIF. Hewlett Packard Enterprise supplies an
OpenIPMI-based driver for CHIF so it can be used with IPMITool.

LANPlus Interface
The LANPlus interface communicates with the BMC over an Ethernet LAN connection using UDP over IPv4
and IPv6. The LANPlus interface uses the RMCP+ protocol. RMCP+ facilitates:

• Improved authentication
• Improved data integrity checks
• Encryption
• Ability to carry multiple types of payloads

Generic Serial Over LAN support requires RMCP+, so the IPMItool sol activate command requires the
use of LANPlus.

RMCP+ session establishment uses a symmetric challenge-response protocol called Remote Authenticated
Key-Exchange Protocol (RAKP) which allows the negotiation of many options.

NOTE:

IPMItool does not allow you to specify the value of every option, defaulting to the most obvious settings
marked as required in the 2.0 specification. Authentication and integrity HMACS are produced with
SHA1, and encryption is performed with AES-CBC-128. Role-level logins are not yet supported.

IPMItool must be linked with the OpenSSL library to perform the encryption functions and support the
LANPlus interface. If the required packages are not found it will not be compiled and supported. To link
IPMItool with the OpenSSL Library, run the following command:

ipmitool -I lanplus -H <hostname>[-U <username>][-P <password>]<command>
A host name must be given on the command line to use the LAN interface with IPMItool.

The —C option allows the authentication integrity and encryption algorithms to be used for LANPlus sessions
based on the cipher suite ID found in IPMI 2.0. The default cipher suite is 3, which specifies the following
algorithms.

• RAKP-HMAC-SHA1 authentication
• HMAC-SHA1–96 integrity
• AES-CBC-128 encryption

22  About interface types



Raw Get Device ID to chassis satellite controller over LAN
# ipmitool -I lanplus -H 16.85.178.125 -U admin -P admin123 -L Administrator -b 
0 -t 0x44 raw 6 1
15 01 02 01 02 29 0b 00 00 00 85 00 00 00 00
        

Powering on a system over LAN
# ipmitool -I lanplus -H 16.85.178.125 -U admin -P admin123 -L Administrator 
chassis power on
Chassis Power Control: Up/On
        

Activating SOL on a system over LAN
# ipmitool -I lanplus -H 16.85.178.125 -U admin -P admin123 -L Administrator 
sol activate

Features
Instead of directly accessing the monitoring hardware for device entry, IPMI provides access to sensor data
through abstracted messaging commands. Some common types of sensors that can be found in the system
include baseboard and processor temperature sensors, processor and DIMM presence sensors, fan speed
and failure monitoring, and baseboard, processor and SCSI terminating voltage sensors. The amount of data
available for each sensor can be overwhelming, so by default IPMItool only displays the sensor name,
reading and status. Considerably more output can be seen by enabling the verbose output option.

To facilitate discovery of features, IPMI includes a set of records called SDRs kept in a single centralized non-
volatile storage area. These records include software information such as how many sensors are present,
what type they are, their events, threshold info and more. This allows software to interpret and present sensor
data without any prior knowledge about the platform.

Output from sdr list all command

root@MFIKE-LX:/# ipmitool -I lanplus -H 15.214.36.129 -U admin -P admin123 sdr 
list all
UID Light        | 0x00              | ok
Health LED       | 0x00              | ok
01-Inlet Ambient | 20 degrees C      | ok
02-CPU 1         | 40 degrees C      | ok
03-CPU 2         | 40 degrees C      | ok
04-DIMM P1 1-3   | disabled          | ns
05-DIMM P1 4-6   | 27 degrees C      | ok
06-DIMM P2 1-3   | disabled          | ns
07-DIMM P2 4-6   | 23 degrees C      | ok
08-HD Max        | 35 degrees C      | ok
09-Chipset       | 44 degrees C      | ok
10-VR P1         | 30 degrees C      | ok
.
.
.
PsMgmtCtlr3      | Dynamic MC @ 56h  | ok
PsMgmtCtlr4      | Dynamic MC @ 58h  | ok

Features 23



See Verbose output examples on page 255 for an example of verbose output from the sdr list all
command.

Events
Events are special messages sent by the management controller when they detect system management
events. Some examples of events are temperature threshold exceeded, voltage threshold exceed, correctable
ECC memory error, etc. These events are processed and usually logged in the SEL. This is similar to the
SDR in that it provides a centralized non-volatile storage area for platform events that are logged
autonomously by the MC or directly with event messages sent from the host.

There is an abundance of information available from an event log entry. By default IPMItool displays only the
basic data for the event and the sensor that triggered it. Detailed information is available with the verbose
option.

Output from sel list command

   0 | 04/16/2013 | 20:22:01 | Power Supply #0x04 | Failure detected | Asserted
   1 | 06/28/2013 | 20:36:17 | Power Supply #0x02 | Presence detected | 
Deasserted
   2 | 07/28/2013 | 00:20:52 | Power Supply #0x02 | Failure detected | Asserted
   3 | 08/04/2013 | 00:23:10 | Power Supply #0x02 | Presence detected | 
Deasserted
   4 | 08/09/2013 | 14:34:48 | Fan #0x07 | Transition to Off Line | Asserted
   5 | 08/09/2013 | 14:34:49 | Fan #0x07 | Transition to Running | Deasserted
See Verbose output examples on page 255 for an example of verbose output from the sel list
command.

Inventory
IPMI supports multiple sets of non-volatile FRU information for different parts in the system. This provides
access to data such as serial number, part number, asset tag, and other information for major modules in the
system including the baseboard, chassis, processors, memory, power supplies, and even the management
controller itself. This information is even available when the system is powered down or non-operational,
facilitating the creation of automated remote inventory and service applications. IPMItool can read and display
full FRU information for the system as well as detailed descriptions of power supplies and full DIMM SPD
data.

Output from the fru print command

root@MFIKE-LX:/# ipmitool -I lanplus -H 15.214.36.129 -U admin -P admin123 fru 
print
FRU Device Description : Builtin FRU Device (ID 0)
Board Mfg Date        : Tue Dec 31 16:00:00 2013
Board Mfg             : HP
Board Product         : ProLiant SL4540 Gen8 
 Board Serial          : MemErrorSerNbr  
 Board Part Number     :                 
 Product Manufacturer  : HP
Product Name          : ProLiant SL4540 Gen8 
 Product Part Number   :                 
 Product Serial        : MemErrorSerNbr  
.
.
.

24  Events



Product Version       : 01
Product Serial        : 5BXRB0B4D1L0TN

Chassis management
This feature provides standardized chassis status and control functions that allow a remote system to be
turned on/off or rebooted without manual intervention. It also provides commands for causing the chassis to
physically identify itself with an implementation dependant mechanism such as turning on visible lights,
displaying messages on an LCD, emitting beeps through a speaker, etc. IPMItool fully supports the available
chassis management commands and can eliminate trips to the data center or server room to reset a frozen
machine or help identify the single system in a rack that must be removed.

Sample chassis power commands

root@MFIKE-LX:/# ipmitool -I lanplus -H 15.214.36.119 -U admin -P admin123 sdr 
list all
ZoMC             | Static MC @ 20h   | ok
254              | Log FRU @FEh f0.60 | ok
IPMB0 Phys Link  | 0x00              | ok
ChasMgmtCtlr1    | Static MC @ 44h   | ok
PsMgmtCtlr1      | Dynamic MC @ 52h  | ok
PsMgmtCtlr2      | Dynamic MC @ 54h  | ok
PsMgmtCtlr3      | Dynamic MC @ 56h  | ok
PsMgmtCtlr4      | Dynamic MC @ 58h  | ok
CaMC             | Static MC @ A6h  | ok
CaMC             | Static MC @ B8h   | ok
CaMC             | Static MC @ DAh  | ok
CaMC             | Static MC @ A8h  | ok
CaMC             | Static MC @ 82h  | ok
CaMC             | Static MC @ 84h  | ok
CaMC             | Static MC @ 8Eh  | ok
CaMC             | Static MC @ 90h  | ok
        

root@MFIKE-LX:/# ipmitool -I lanplus -H 15.214.36.119 -U admin -P admin123 -T 
0x82 -b 7 -t 0x72 power status
Chassis Power is off
root@MFIKE-LX:/#
        
In all of the above examples only a portion of the available output is shown, the full output is much richer and
tells a full story about the system health and status; in addition verbose output options are available which
increase the output information. See Verbose output examples on page 255 for examples of verbose
output.

Synopsis
ipmitool [-chvV] [-I open <command>]

ipmitool [-chvV] -I lan -H <hostname> 
 [-p <port>] 
 [-U <username>] 
 [-A <authtype>] 
 [-L <privlvl>] 
 [-aEPf <password>] 

Chassis management 25



 [-o <oemtype>] 
 <command>

ipmitool [-chvV] -I lanplus -H <hostname> 
 [-p <port>] 
 [-U <username>] 
 [-L <privlvl>] 
 [-aEPf <password>] 
 [-o <oemtype>] 
 [-C <ciphersuite>] 
 <command>
Description

This program allows management of IPMI functions of either the local system via a kernal device driver or a
remote system using IPMI v1.5 and IPMI v2.0. These functions include printing FRU information, LAN
configuration, sensor readings and remove chassis power control.

IPMI management of a local system interface requires a compatible IPMI kernel driver to be installed and
configured. On Linux this driver is called OpenIPMI and it is included in standard distributions.

Options

—a Prompt for the remote server password.

—A <authtype> Specify the authentication type to use during IPMI v1.5 LAN
session activation. Supported types are NONE, PASSWORD, MD5
or OEM.

—c Present output in CSV format. Not available with all commands.

—C <ciphersuite> The remote server authentication, integrity, and encryption
algoritms to use for IPMI v2 lanplus connections. Default = 3 and
specifies RAKP-HMAC-SHA1 authentication, HMAC-SHA1–96
integrity, and AES-CBC-128 encryption algorithms.

—E The remote server password is specified by the environment
variable

ipmi_password

.

—f <password_file> Specifies a file containing the remote server password. If this
option is absent or if the

<password_file>

is empty the password defaults to NULL.

—h Get basic usage help from the command line.

Table Continued

26 IPMItool



—H <address> Remote server address can be

IP address

or

hostname

. This option is required for LAN and LANPLUS interfaces.

— I <interface> Selects the IPMI interface. Supported interfaces display in the
usage help output.

—L <privlvl> Force session privilege level, defaults to

admin

.

—m <local address> Set the local IPMB address. Default =

0x20

.

—o <oemtype> Select OEM type. Use

—o list
to see a list of currently supported OEM types.

-p<port> Remote server UDP port. Default = 623.

-P<password> Remote server password specified on the command line. It is not
recommended to specify a password on the command line.

NOTE:

If no password method is specified, the IPMI tool prompts
the user for a password, if no password is entered, the
remote server password is set to NULL.

—t <target address> Bridge IPMI requests to the remote target address.

—U <username> Remote server username. Default = NULL

—v Increase verbose output level. May be specified multiple times to
increase levels of debug output, for example, specifying three
times results in hexdumps of all incoming and outgoing packets.

—V Display version information.

IPMItool Raw command syntax and example
Procedure

1. Syntax — Target command towards specific virtual controller
a. —b <ipmi channelnumber>

IPMItool Raw command syntax and example 27



b. —t <target slave address>
c. -m <source slave address>

• Chassis controller

—b 0 —t 0x44 —m 0x20
• Power supply A controller

-b 0 -t 0x52 -m 0x20
• Power supply B controller

-b 0 -t 0x54 -m 0x20
• Power supply C controller

-b 0 -t 0x56 -m 0x20
• Power supply D controller

-b 0 -t 0x58 -m 0x20
2. Example: Raw Get Device ID to chassis satellite controller over LAN:
3. ipmitool -I lanplus -H 16.85.178.125 -U admin -P admin123 -L Administrator -b

0 -t 0x44 -m 0x20 raw 6 1

28 IPMItool



Command specification
IPMI provides standardized interfaces and commands for configuring the platform management subsystem.
This standardization enables cross-platform software to SDRs are an example of the interface for configuring
sensor population and behavior on a system. There are also commands for configuring capabilities such as
LAN and serial/modem remote protocols, user passwords and privilege levels, platform event filtering, alert
destinations, and others.

This section provides specifications for elements that apply to all requests and responses.

For more information, see Completion codes on page 226.

Unless otherwise noted, reserved bits and fields in commands (request messages) and responses are written
as 0. Applications must ignore the state of reserved bits when they are read.

Unless otherwise specified, commands that are listed as mandatory must be accessed via LUN 00b. An
implementation may elect to make any command available on any LUN or channel as long as it does not
conflict with other requirements in this specification.

Command table notation

The following section includes command tables that list the data that is included in a request or a response for
each command. The completion code for a response is included as the first byte of the response data field for
each command. The NetFn and command byte values for each command are specified in separate tables.

The following notation is used in the command tables.

Notation Description

Request data Identifies the portion of the table that lists the fields that are included in the data portion of
a request message for the given command.

Response data Identifies the portion of the table that lists the fields that are included in the data portion of
a response message for the given command. The completion code is always listed as the
first byte in the response data field.

4 Single byte field. A single value in the byte column of a command table is used to identify
a single byte field. The value represents the offset to the field within the data portion of the
message. In some cases a single byte field follows a variable length field in which case
the single byte offset is represented with an alphabetic variable and number representing
the single byte field’s location relative to the end of the variable length field. For example:
N+1.

Table Continued

Command specification 29



Notation Description

5:7 Multi-byte field. The byte column indicates the byte offset(s) for a given field. For a multi-
byte field, the first value indicates the starting offset, the second value (following the
colon) indicates the offset for the last byte in the field. For example, 5:7 indicates a three-
byte field spanning byte offsets 5, 6, and 7.

In some cases, multi-byte fields may be variable length, in which case an alphabetic
variable is used to represent the ending offset, for example: 5:N. Similarly, a field may
follow a variable length field. In this case the starting value is shown as an offset relative
to the notation used for the previous field, for example, if the previous field were 5:N, the
next field would be shown starting at N+1.

A variable length field may follow a variable length field, in which case a relative starting
offset is shown with an alphabetic value indicating a relative ending offset, for example, N
+1:M.

(3) Optional Fields. When used in the byte column of the command tables, parentheses are
used to indicate optional data byte fields. These can be absent or present at the choice of
the party generating the request or response message. Devices receiving the message
are required to accept any legal combination of optional data byte fields.

Unless otherwise indicated, if an optional byte field is present, all prior specified byte fields
must also be present. Similarly, if an optional byte field is absent all following byte fields
must also be absent. For example, suppose a request accepts 4 data bytes. If data byte 3
was shown in parentheses as (3), it would indicate that byte 3 and following were optional.
A legal request could consist of just bytes [1 and 2], bytes [1, 2, and 3,] or bytes [1, 2, 3
and 4]. A request which eliminates byte 3, but includes byte 4. (a request with data bytes
[1, 2, and 4]), is illegal.

Multi-byte fields that are shown as optional cannot be split. Either all bytes for the field are
present or absent. For example, if a four byte multi-byte field is listed as optional, it is
illegal to include the first two bytes, but not the second two bytes.

Standard command specification
This section presents the commands that are common to all IPMI devices that follow this specification’s
message/command interface. This includes management controllers that connect to the system via a
compatible message interface, as well as IPMB devices.

Global commands
IPMI management controllers shall recognize and respond to these commands via LUN 0.

Get device ID command
This command is available to BMC, ChMC, and PSMC.

This command is used to retrieve the intelligent device’s hardware revision, firmware/software revision, and
sensor and event interface command specification revision information. The command also returns
information regarding the additional logical device functionality (beyond application and IPM device
functionality) that is provided within the intelligent device, if any.

While broad dependence on OEM-specific functionality is discouraged, two fields in the response allow
software to identify controllers for the purpose of recognizing controller specific functionality. These are the
device ID and the product ID fields. A controller that just implements standard IPMI commands can set these
fields to unspecified.

30  Standard command specification



Table 6: Device ID command response data

Response
data byte
number

Data field

1 Completion code

2 Device ID. 00h = unspecified

3 Device revision

• [7] — 1=device provides device SDRs and 0=device does not provide device SDRs.
• [6:4) — Reserved. Return as 0.
• [3:0] — Device revision, binary encoded.

4 Firmware revision 1

• [7] — Device available: 0=normal operation, device firmware, SDR repository update or
self-initialization in progress. Firmware or SDR repository updates can be differentiated
by issuing a get SDR command and checking the completion code.

• [6:0] — Major firmware revision, binary encoded.

5 Firmware revision 2: minor firmware revision. BCD encoded.

6 IPMI version. Holds IPMI command specification version. BCD encoded. 00h = reserved.
Bits 7:4 hold the least significant digit of the revision, while bits 3:0 hold the most significant
bits. For example, a value of 51h indicates revision 1.5 functionality. 02h for implementations
that provide IPMI v2.0 capabilities per this specification.

7 Additional device support (formerly called IPM device support) lists the IPMI logical device
commands and functions supported by the controller that are in addition to the mandatory
IPM and application commands.

• [7] — Chassis device
• [6] — Bridge (device responds to bridge NetFn commands)
• [5] — IPMB event generator. Device generates event messages (platform event request

messages) from the IPMB.
• [4] — IPMB event receiver. Device accepts event messages (platform event request

messages) from the IPMB.
• [3] — FRU inventory device
• [2] — SEL device
• [1] — SDR repository device
• [0] — Sensor device

8:10 manufacturer ID, LS byte first. The manufacturer ID is a 20-bit value that is derived from the
IANA private enterprise ID (see below). Most significant four bits = reserved (0000b).

000000h = unspecified. 0FFFFFh = reserved. This value is binary encoded. For example,
the ID for the IPMI forum is 7154 decimal, which is 1BF2h, and would be stored in this
record as F2h, 1Bh, 00h for bytes 8 through 10, respectively.

Table Continued

Command specification 31



Response
data byte
number

Data field

11:12 Product ID, LS byte first. This field can be used to provide a number that identifies a
particular system, module, add-in card, or board set. The number is specified according to
the manufacturer given by manufacturer ID (see below).

0000h = unspecified. FFFFh = reserved.

(13:16) Auxiliary firmware revision information. This field is optional. If present, it holds additional
information about the firmware revision, such as boot block or internal data structure version
numbers. The meanings of the numbers are specific to the vendor identified by
manufacturer ID (see below). When the vendor-specific definition is not known, generic
utilities should display each byte as 2-digit hexadecimal numbers, with byte 13 displayed
first as the most significant byte.

Additional specifications and descriptions for the device ID response fields:

Table 7: Additional device ID specifications

Device ID Specification Description

Device ID/Device instance Specified by the manufacturer identified by the manufacturer ID field it
allows controller-specific software to identify the unique application
command, OEM fields, and functionality that are provided by the
controller.

Controllers that have different application commands, or different
definitions of OEM fields, are expected to have different device ID
values. Controllers that implement identical sets of applications
commands can have the same device ID in a given system. Thus, a
standardized controller could be produced where multiple instances of
the controller are used in a system, and all have the same device ID
value. (The controllers would still be differentiable by their address,
location, and associated information for the controllers in the SDRs.)

The device ID is typically used in combination with the product ID field
such that the device IDs for different controllers are unique under a
given product ID. A controller can optionally use the device ID as an
instance identifier if more than one controller of that kind is used in the
system.

Binary encoded.

Device revision The least significant nibble is used to identify when significant
hardware changes have been made to the implementation of the
management controller that cannot be covered with a single firmware
release. This field is used to identify two builds off the same code
firmware base, but for different board fab levels. For example, device
revision "1" might be required for fab X and earlier boards, while
device revision "2" would be for fab Y and later boards.

Binary encoded and unsigned.

Table Continued

32 Command specification



Device ID Specification Description

Firmware revision 1 Major revision of the firmware. 7-bits. It is incremented on major
changes or extensions of the functionality of the firmware, such as
additions, deletions, or modifications of the command set.

The device available bit is used to indicate whether normal command
set operation is available from the device, or if it is operating in a state
where only a subset of the normal commands are available. Typically
because the device is in a firmware update state. It may also indicate
that full command functionality is not available because the device is
in its initialization phase or an SDR update is in progress.

The revision information obtained when the device available bit is 1 is
indicative of the code version that is in effect. The version information
may vary with the device available bit state.

Binary encoded and unsigned.

Firmware revision 2 Minor revision of the firmware, incremented for minor changes such
as bug fixes.

BCD encoded.

IPMI version The version of the IPMI specification in which the controller is
compatible, indicating conformance with this document including
event message formats and mandatory command support.

The value is 02h for implementations that provide IPMI v2.0
capabilities per this specification.

BCD encoded with bits 7:4 holding the least significant digit of the
revision and bits 3:0 holding the most significant bits.

Additional device support Indicates the logical device support that the device provides in
addition to the IPM and application logical devices.

Table Continued

Command specification 33



Device ID Specification Description

Manufacturer ID Uses IANA (http://www.iana.org/). SMI network management private
enterprise codes (enterprise numbers) for identifying the manufacturer
responsible for the specification of functionality of the vendor (OEM) -
specific commands, codes, and interfaces used in the controller.

For example, an event in the SEL could have OEM values in the event
record. An application that parses the SEL could extract the controller
address from the event record contents and use it to send the get
device ID command and retrieve the manufacturer ID. A
manufacturer-specific application could then do further interpretation
based on prior knowledge of the OEM field, while a generic cross-
platform application would typically just use the ID to present the
manufacturer’s name alongside uninterpreted OEM event values.

The manufacturer ID is for the manufacturer that defines the
functionality of the controller, which is not necessarily the
manufacturer that created the physical microcontroller. For example,
vendor A may create the controller, but it gets loaded with vendor B’s
firmware. The manufacturer ID would be for vendor B, since they
defined the controller’s functionality.

The manufacturer ID value from the get device ID command does
not override manufacturer or OEM ID fields that are explicitly defined
as part of a command or record format.

If no vendor-specific functionality is defined, it is recommended that
the field be loaded with the manufacturer ID for the manufacturer that
is responsible for the controller's firmware, or the value FFFFh to
indicate unspecified.

Binary encoded and unsigned.

Product ID Used in combination with the manufacturer ID and device ID values to
identify the product-specific element of the controller-specific
functionality. This number is specified by the manufacturer identified
by the manufacturer ID field.

Typically, a controller-specific application would use the product ID to
identify the type of board, module, or system that the controller is used
in, instead of using the data from the FRU information associated with
the controller.

Auxiliary firmware revision
information

This field is optional. If present, it holds additional information about
the firmware revision, such as boot block or internal data structure
version numbers. The meanings of the numbers are specific to the
vendor identified by manufacturer ID. When the vendor-specific
definition is not known, generic utilities should display each byte as 2-
digit hexadecimal numbers, with byte 13 displayed first as the most
significant byte.

Cold reset command
This command is available to the MC. This command is not required to return a response in all
implementations.

This command directs the responder's device to reinitialize its event, communication, and sensor functions.
This causes the default setting of interrupt enables, event message generation, sensor scanning, threshold

34  Cold reset command



values, and other power up default state to be restored. If the device incorporates a self test, the self test also
runs at this time.

Table 8: Cold reset command response data

Response data
byte number

Data field

1 Completion code

NOTE:

The cold reset command is provided for platform development, test, and platform-specific
initialization and recovery actions. The system actions of the cold reset command are platform
specific. Issuing a cold reset command could have adverse effects on system operation, particularly
if issued during run-time. Therefore, the cold reset command should not be used unless all the side-
effects for the given platform are known.

It is recognized that there are conditions where a given controller may not be able to return a response
to a cold reset request message. Therefore, though recommended, the implementation is not required
to return a response to the cold reset command. Applications should not rely on receiving a
response as verification of the completion of a cold reset command.

Warm reset command
This command is available to the MC.

This command directs the responder's device to reset communications interfaces, but current configurations
of interrupt enables, thresholds, and so on are left alone. A warm reset does not initiate the self test. The
intent of the warm reset command is to provide a mechanism for cleaning up the internal state of the device
and its communication interfaces. A warm reset resets communication state information such as sequence
number and retry tracking, but does not reset interface configuration information such as addresses, enables,
and so on. An application may try a warm reset if it determines a non-responsive communication interface,
but it must also be capable of handling the side effects.

Table 9: Warm reset command response data

Response data
byte number

Data field

1 Completion code

Get self test results command
This command is available to MC, ChMC, and PSMC.

This command directs the device to return its self test results, if any. A device implementing a self test
normally runs that test on device power up as well as after cold reset commands. A device is allowed to
update this field during operation if it has tests that run while the device is operating. Devices that do not
implement a self test always return a 56h for this command.

While the self test only runs at particular times, the get self test results command can be issued any
time the device is in a ready for commands state.

Warm reset command 35



Table 10: Get self test results command response data

Response data
byte number

Data field

1 Completion code.

2 • 55h — No error. All self tests passed.
• 56h — Self test function not implemented in this controller.
• 57h — Corrupted or inaccessible data or devices.
• 58h — Fatal hardware error (system should consider MC inoperative). This

indicates that the controller hardware (including associated devices such as sensor
hardware or RAM) may need to be repaired or replaced.

• FFh — Reserved.
• All other — Device-specific internal failure. Refer to the particular device

specification for definition.

3 For byte 2 =:

• 55h, 56h, FFh: 00h
• 58h, all other: Device-specific.
• 57h: self-test error bitfield. A return of 57h does not imply that all tests were run,

just that a given test has failed. For example, 1b means failed, 0b means unknown.

• [7] — 1b = Cannot access SEL device.
• [6] — 1b = Cannot access SDR repository.
• [5] — 1b = Cannot access MC FRU device.
• [4] — 1b = IPMB signal lines do not respond.
• [3] — 1b = SDR repository empty.
• [2] — 1b = Internal use area of MC FRU corrupted.
• [1] — 1b = Controller update boot block firmware corrupted.
• [0] — 1b = Controller operational firmware corrupted.

Get ACPI power state command
This command is available to the MC.

The command is used to retrieve the present power state information that has been set into the controller.
This is an independent setting from the system power state that may not necessarily match the actual power
state of the system. Unspecified bits and codes are reserved and returned as 0.

Table 11: Get ACPI power state command response data

Response data
byte number

Data field

1 Completion code

2 ACPI system power state

[7] — Reserved

Table Continued

36  Get ACPI power state command



Response data
byte number

Data field

[6:0] — System power state enumeration

00h S0 / G0 Working

01h S1 Hardware context maintained, typically equates to
processor/chip set clocks stopped

02h S2 Typically equates to stopped clocks with processor/
cache context lost

03h S3 Typically equates to suspend-to-RAM

04h S4 Typically equates to suspend-to-disk

05h S5 / G2 Soft off

06h S4/S5 Soft off, cannot differentiate between S4 and S5

07h G3 Mechanical off

08h sleeping Sleeping - cannot differentiate between S1-S3

09h G1 sleeping Sleeping - cannot differentiate between S1-S4

0Ah Override S5 entered by override

20h Legacy on Legacy on (indicates on for system that does not
support ACPI or has ACPI capabilities disabled)

21h Legacy off Legacy soft-off

2Ah Unknown Power state has not been initialized, or device lost track
of power state

3 ACPI device power state

[7] — Reserved

[6:0] — Device power state enumeration

00h D0

01h D1

02h D2

03h D3

02h Unknown Power state has not been initialized, or device lost track
of power state

Command specification 37



Broadcast get device ID command
This command is available to MC, ChMC, and PSMC. It is only relevant to satellite controllers.

This command is the broadcast version of the get device ID command which provides for the discovery of
intelligent devices on the IPMB only. Request is formatted as an entire IPMB application request message,
from the RsSA field through the second checksum, with the message prefixed with the broadcast slave
address, 00h. Response format is same as the regular get device ID response.

The broadcast get device ID command is not bridged but can be delivered to the IPMB using master
write-read commands.

To perform a discovery, the command is repeatedly broadcast with a different rsSA slave address parameter
field specified in the command. The device that has the matching physical slave address information shall
respond with the same data it would return from a regular (non-broadcast) get device ID command. Since
an IPMB response message carries the responder’s slave address, the response to the broadcast provides a
positive confirmation that an intelligent device exists at the slave address given by the rsSA field in the
request.

An application driving discovery then cycles through the possible range of IPMB device slave addresses to
find the population of intelligent devices on the IPMB.

See Get device ID command on page 30 for information on the fields returned by the broadcast get
device ID command response. The IPMB message format for the broadcast get device ID ID
request exactly matches that for the get device ID command, with the exception that the IPMB message
is prefixed with the 00h broadcast address. The following illustrates the format of the IPMB broadcast get
device ID request message:

Figure 2: Broadcast get device ID request message

Addresses 00h-0Fh and F0h-FFh are reserved for I2C functions and not used for IPM devices on the IPMB.
These addresses can therefore be skipped if using the broadcast get device ID command to scan for
IPM devices. The remaining fields follow the regular IPMB definitions.

In order to speed the discovery process on the IPMB, a controller should drop off the bus as soon as it sees
that the rsSA in the command does not match its rsSA.

IPMI messaging support commands
This section defines the commands used to support the system messaging interfaces. This includes control
bits for using the MC as an event receiver and SEL device. SMM messaging and event message buffer
support is optional. Use of IPMI support for SMI and SMM messaging is deprecated. Configuration interface
support for enabling or disabling SMM messaging and corresponding SMI has been removed from the
specification. If SMM messaging were implemented using the IPMI infrastructure, it would now be done as an
OEM-proprietary capability.

System software that is not explicitly aware of the particular platform’s use of SMI messaging must assume
that the any SMI options have been pre-configured by the controller, system BIOS, or other software.
Therefore, runtime system software should not reconfigure SMI options, nor should it access the event
message buffer if it finds that event message buffer interrupt is mapped to SMI. The effects of SMS accessing
the event message buffer when it is configured for SMI are unspecified.

Set BMC global enables command
This command is available to the MC.

38  Broadcast get device ID command



This command is used to enable message reception into message buffers, and any interrupt associated with
that buffer getting full. The OEM0, OEM 1, and OEM 2 flags are available for definition by the OEM/system
integrator. Generic system management software must not alter these bits.

Table 12: Set BMC global enables command request and response data

Request
data byte
number

Data field

1 This field is set to xxxx_100xb on power-up and system resets. If the implementation allows
the receive message queue interrupt to be enabled/disabled, the default for bit 0 should be
0b.

[7] OEM 2 Enable Generic system management software must do a ‘read-
modifywrite’ using the

get BMC global enables
and

set BMC global enables
commands to avoid altering this bit.

[6] OEM 1 Enable

[5] OEM 0 Enable

[4] Reserved

[3] 1b = Enable system event logging (enables/disables logging of
events to the SEL - with the exception of events received over
the system interface. Event reception and logging via the
system interface is always enabled.) SEL logging is enabled by
default whenever the MC is first powered up. It is
recommended that this default state also be restored on
system resets and power on.

[2] 1b = Enable event message buffer. Error completion code returned
if written as 1 and the event message buffer not supported.

[1] 1b = Enable event message buffer full interrupt.

[0] 1b = Enable receive message queue interrupt (this bit also controls
whether KCS communication interrupts are enabled or
disabled. An implementation is allowed to have this interrupt
always enabled.)

NOTE:

If the event message buffer full or receive message queue interrupt are not supported,
an implementation can elect to return a CCh error completion code for the set BMC
global enables command if an attempt is made to enable the interrupt (this is the
recommended implementation). Alternatively, the implementation can accept the
command, but must return 0b for the corresponding bit in the get BMC global
enables.

Table Continued

Command specification 39



Response
data byte
number

Data field

1 Completion code

Get BMC global enables command
This command is available to the MC.

This command is used to retrieve the present setting of the global enables. The OEM0, OEM 1, and OEM 2
flags are available for definition by the OEM/system integrator. Generic system management software must
ignore these bits.

Table 13: Get BMC global enables command response data

Response
data byte
number

Data field

1 Completion code

2 [7] 1b = OEM 2 enabled

[6] 1b = OEM 1 enabled

[5] 1b = OEM 0 enabled

[4] Reserved

[3] 1b = System event logging enabled

[2] 1b = Event message buffer enabled

[1] 1b = Event message buffer full interrupt enabled

[0] 1b = Receive message queue interrupt enabled (this bit also indicates
whether KCS communication interrupt is enabled or disabled.)

If the receive message queue or event message full interrupts are not implemented the
corresponding interrupt enabled status bit must return as 0b.

Clear message flags command
This command is available to the MC.

This command is used to flush unread data from the receive message queue or event message buffer. This
will also clear the associated buffer full/message available flags. See Get message flags command on page
41.

40  Get BMC global enables command



Table 14: Clear message flags command request and response data

Request
data byte
number

Data field

1 [7] 1b = Clear OEM 2

[6] 1b = Clear OEM 1

[5] 1b = Clear OEM 0

[4] Reserved

[3] 1b = Clear watchdog pre-timeout interrupt flag

[2] Reserved

[1] 1b = Clear event message buffer

[0] 1b = Clear receive message queue

If the receive message queue or event message full interrupts are not implemented the
corresponding interrupt enabled status bit must return as 0b.

Response
data byte
number

Data field

1 Completion code. Implementations are not required to return an error completion code if an
attempt is made to clear the event message buffer flag but the event message buffer is not
supported.

Get message flags command
This command is available to the MC.

This command is used to retrieve the present message available states. The OEM0, OEM 1, and OEM 2 flags
are available for definition by the OEM/system integrator. Generic system management software must ignore
these bits.

Table 15: Get message flags command response data

Request
data byte
number

Data field

1 Completion code

2 Flags

[7] 1b = OEM 2 data available.

Table Continued

Get message flags command 41



Request
data byte
number

Data field

[6] 1b = OEM 1 data available.

[5] 1b = OEM 0 data available.

[4] Reserved.

[3] 1b = Watchdog pre-timeout interrupt occurred.

[2] Reserved.

[1] 1b = Event message buffer full. Return as 0 if event message buffer is not
supported, or when the event message buffer is disabled.

[0] 1b = Receive message available. One or more messages ready for reading
from receive message queue.

Enable message channel receive command
This command is available to the MC.

This command is used to enable and disable message reception into the receive message queue from a
given message channel. The command provides a mechanism to allow SMS to only receive messages from
channels that it intends to process, and provides a disable mechanism in case the receive message queue is
being erroneously or maliciously flooded with requests on a particular channel. It does not affect the ability for
SMS to transmit on that channel. Only the SMS message channel is enabled by default. All other channels
must be explicitly enabled by BIOS or system software, as appropriate. It is recommended that a destination
unavailable completion code be returned if a request message to SMS is rejected because reception has
been disabled.

Table 16: Enable message channel receive command request and response data

Request
data byte
number

Data field

1 Channel number

• [7:4] — Reserved
• [3:0] — Channel number

2 Channel state

• [7:2] — Reserved
• [1:0]

◦ 00b = Disable channel
◦ 01b = Enable channel
◦ 10b = Gen channel enable/disable state
◦ 11b = Reserved

Table Continued

42  Enable message channel receive command



Response
data byte
number

Data field

1 Completion code

2 Channel number

• [7:4] — Reserved
• [3:0] — Channel number

3 Channel state

• [7:1] — Reserved
• [0]

◦ 1b = Channel enabled
◦ 0b = Channel disabled

Get message command
This command is available to the MC.

This command is used to get data from the receive message queue.

Software is responsible for reading all messages from the message queue even if the message is not the
expected response to an earlier send message. System management software is responsible for matching
responses up with requests.

The get message command includes an inferred privilege level that is returned with the message. This can
help avoid the need for software to implement a separate privilege level and authentication mechanism. For
example: A user activates a session with a maximum privilege level of Administrator on a multi-session
channel, and an MD5 authentication type was negotiated. That user-level authentication is disabled. A user
that has user or higher privilege can place messages into the receive message queue by sending them to
LUN 10b, or by using the send message command. If the packet has authentication type = MD5, the packet
is assigned an inferred privilege level based the on the present operating privilege level for the user (set using
the set session privilege level command). If, before sending the packet, the user had set their
privilege level to Operator, the packet would be assigned an inferred privilege level of Operator. This means
an authenticated (signed) packet can be assigned different inferred privilege levels based on the present
operating privilege set by the set session privilege level command.) If the message is received in a
packet that has authentication type = none, the packet is assigned an inferred privilege level of User, since
that is the lowest privilege level for which that type of authentication is accepted.

Now suppose that the remote user had used the receive message queue as a way to send a message to
system management software that requests a soft shutdown of the operating system. The message would
either have an inferred privilege level of Operator or User depending on whether it was sent as an
authenticated message or not. SMS can then use that inferred privilege level as part of deciding whether to
accept and process the message or not. For single-session channels, the inferred privilege level is always set
to the present operating privilege level. For session-less channels, the inferred privilege level is set to none,
indicating that there was no IPMI-specified authentication operating on the channel from which the message
was received.

Get message command 43



Table 17: Get message command response data

Response
data byte
number

Data field

1 Completion code.

Generic, plus the command specific completion code: 80h = data not available (queue /
buffer empty). Implementation of this completion code is mandatory. The code eliminates the
need for system software to always check the message buffer flags to see if there is data left
in the receive message queue. If a non-OK, non-80h completion is encountered - software
must check the message flags to get the empty/non-empty status of the receive message
queue.

2 Channel number

• [7:4] Inferred privilege level for message.

When the MC receives a message for the receive message queue, it assigns an inferred
privilege level to the message as follows:

If the message is received from a session-based channel, it is initially assigned a
privilege level that matches the maximum requested privilege level that was negotiated
via the

activate session
command.

If per-message authentication is enabled, but user-level authentication is disabled, the
MC assigns a level of User to any messages that are received with an authentication
type = none. (Per-message and user-level authentication options only apply to multi-
session channels).

The MC then lowers the assigned privilege limit, if necessary, based on the present
session privilege limit that was set via the

set session privilege level
command.

If the channel is session-less such as IPMB), the MC returns none for the privilege level.

◦ 0h = None (unspecified)
◦ 1h = Callback level
◦ 2h = User level
◦ 3h = Operator level
◦ 4h = Administrator level
◦ 5h = OEM proprietary level

• [3:0] channel number

3:N Message data. Maximum length and format dependent on protocol associated with the
channel.

The following table indicates the contents of the Message Data field from the get message response
according to the channel type and channel protocol that was used to place the message in the receive
message queue.

44 Command specification



Table 18: Get message data fields

Originating
channel type

Channel protocol Message data for received requests (RQ)
and responses (RS)

1 IPMB (I
2

C)

IPMB
1

RQ: netFn/rsLUN, chk1, rqSA, rqSeq/
rqLUN, cmd, <data>, chk2

RS: netFn/rqLUN, chk1, rsSA, rqSeq/rsLUN,
cmd, completion code, <data>, chk2

4 802.3 LAN IPMB RQ: Session handle, rsSWID, netFn/rsLUN,
chk1, rqSWID or rqSA, rqSeq/rqLUN, cmd,
<data>, chk2

RS: Session handle, rqSWID, netFn/rsLUN,
chk1, rsSWID or rsSA, rqSeq/rsLUN, cmd,
completion code, <data>, chk2

5 Asynch. serial/
modem (RS-232)

IPMB (basic mode, terminal
mode, and PPP mode)

RQ: Session handle, rsSWID, netFn/rsLUN,
chk1, rqSWID or rqSA, rqSeq/rqLUN, cmd,
<data>, chk2

RS: Session handle, rqSWID, netFn/rsLUN,
chk1, rsSWID or rsSA, rqSeq/rsLUN, cmd,
completion code, <data>, chk2

NOTE:

When LUN 10b is used to deliver a
message to SMS from a terminal
mode remote console, the MC inserts
fixed values for the SWIDs and LUNs
in the message. Messages from the
remote console are always returned
as coming from SWID 40h (81h) LUN
00b, and going to SMS SWID 20h
(41h) LUN 00b.

6 Other LAN IPMB RQ: Session handle, rsSWID, netFn/rsLUN,
chk1, rqSWID or rqSA, rqSeq/rqLUN, cmd,
<data>, chk2

RS: Session handle, rqSWID, netFn/rsLUN,
chk1, rsSWID or rsSA, rqSeq/rsLUN, cmd,
completion code, <data>, chk2

7 PCI SMBus IPMI-SMBus RQ: rsSA, Netfn(even)/rsLUN, 00h, rqSA,
rqSeq/rqLUN, CMD, <data>, PEC

RS: rqSA or rqSWID, NetFn(odd)/rqLUN,
00h, rsSA or rsSWID, rqSeq/rsLUN, CMD,
completion code, <data>, PEC

8 SMBus v1.0/1.1

9 SMBus v2.0

10 Reserved for USB
1.x

n/a n/a

Table Continued

Command specification 45



Originating
channel type

Channel protocol Message data for received requests (RQ)
and responses (RS)

11 Reserved for USB
2.x

n/a n/a

12 System interface BT, KCS, SMIC RQ: Session handle, rsSWID, netFn/rsLUN,
chk1, rqSWID or rqSA, rqSeq/rqLUN, cmd,
<data>, chk2

RS: Session handle, rqSWID, netFn/rsLUN,
chk1, rsSWID or rsSA, rqSeq/rsLUN, cmd,
completion code, <data>, chk2

1 This message data matches the IPMB message format with the leading slave address omitted. The format
includes checksums. In order to verify those checksums, they must be calculated as if 20h (MC slave
address) was the value that was used as the slave address when the checksums were calculated per
[IPMB]. 20h is always used for the checksum calculation for the receive message queue data whenever
IPMB is listed as the originating bus and with IPMB as the channel protocol.

Send message command
This command is available to the MC.

The send message command is used for bridging IPMI messages between channels, and between the SMS
and a given channel.

For IPMI v2.0 the send message command has been updated to include the ability to indicate whether a
message must be sent authenticated or with encryption (for target channels on which authentication and/or
encryption are supported and configured).

Table 19: Send message command request and response data

Request
data byte
number

Data field

1 Channel number

[7:6] 00b = No tracking. The MC reformats the message for the selected channel
but does not track the originating channel, sequence number, or
address information. This option is typically used when software
sends a message from the system interface to another media.
Software will typically use no tracking when it delivers sends a
message from the system interface to another channel, such as IPMB.
In this case, the software formats the encapsulated message so that
when it appears on the other channel, it appears to have been directly
originated by MC LUN 10b. See MC LUN 10b on page 233

for more information.

Table Continued

46  Send message command



01b = Track request. The MC records the originating channel, sequence
number, and addressing information for the requester, and then
reformats the message for the protocol of the destination channel.
When a response is returned, the MC looks up the requester’s
information and format the response message with the framing and
destination address information and reformats the response for
delivery back to the requester. This option is used for delivering IPMI
request messages from non-SMS (non-system interface) channels.
See Send Message command with response tracking on page
234

for more information.

10b = Send raw (optional). This option is primarily provided for test
purposes. It may also be used for proprietary messaging purposes.
The MC simply delivers the encapsulated data to the selected channel
in place of the IPMI message data. If the channel uses sessions, the
first byte of the message data field must be a session handle. The MC
must return a non-zero completion code if an attempt is made to use
this option for a given channel and the option is not supported. It is
recommended that completion code CCh be returned for this
condition.

11b = Reserved

[5] 1b = Send message with encryption. MC returns an error completion code
if this encryption is unavailable.

0b = Encryption not required. The message is sent unencrypted if that
option is available under the given session. Otherwise, the message is
sent encrypted.

[4] 1b = Send message with authentication. MC returns an error completion
code if this authentication is unavailable.

0b = Authentication not required. Behavior is dependent on whether
authentication is used and whether the target channel is running an
IPMI v1.5 or IPMI v2.0/RMCP+ session, as follows:

• IPMI v1.5 sessions default to sending the message with
authentication if that option is available for the session.

• IPMI v2.0/RMCP+ sessions send the message unauthenticated if
that option is available under the session. Otherwise, the message
is sent with authentication.

[3:0] Channel number where to send the message

2:N Message data. Format dependent on target channel type.

Request
data byte
number

Data field

Table Continued

Command specification 47



1 Completion code

Generic, plus additional command-specific completion codes: 80h = Invalid session handle.
The session handle does not match up with any currently active sessions for this channel.

If channel medium = IPMB, SMBus, or PCI management bus (This status is recommended
for applications that need to access low-level I2C or SMBus devices).

• 81h = Lost arbitration
• 82h = Bus error
• 83h = NAK on write

(2:N) Response data

This data will only be present when using the send message command to originate
requests from IPMB or PCI management bus to other channels such as LAN or serial/
modem. It is not present in the response to a send message command delivered via the
system interface.

NOTE:

The MC does not parse messages that are encapsulated in a send message command and does not
know what privilege level should be associated with an encapsulated message. Thus, messages that
are sent to a session using the send message command are always output using the authentication
type that was negotiated when the session was activated.

The following table summarizes the contents of the message data field when the send message command
is used to deliver an IPMI message to different channel types. In most cases, the format of message
information the message data field follows are the same used for the IPMB, with two typical exceptions:

• When the message is delivered to channels without physical slave devices, a SWID field takes the place
of the slave address field.

• When the message is delivered to a channel that supports sessions, the first byte of the message data
holds a session handle.

Table 20: Send message data fields

Target channel type Target channel protocol Message data for sending requests (RQ)
and responses (RS)

Table Continued

1 IPMB (I
2

C)

IPMB RQ: rsSA, netFn/rsLUN, chk1, rqSA, rqSeq/
rqLUN, cmd, <data>, chk2

RS: rqSA, netFn/rqLUN, chk1, rsSA, rqSeq/
rsLUN, cmd, completion code, <data>, chk2

4 802.3 LAN IPMB+session header RQ: Session handle, rsSWID, netFn/rsLUN,
chk1, rqSWID or rqSA, rqSeq/rqLUN, cmd,
<data>, chk2

RS: Session handle1, rqSWID, netFn/
rsLUN, chk1, rsSWID or rsSA, rqSeq/
rsLUN, cmd, completion code, <data>, chk2

48 Command specification



Target channel type Target channel protocol Message data for sending requests (RQ)
and responses (RS)

5 Asynch. serial/
modem (RS-232)

IPMB (basic mode, terminal
mode, and PPP mode)

RQ: Session handle1, rsSWID, netFn/
rsLUN, chk1, rqSWID or rqSA, rqSeq/
rqLUN, cmd, <data>, chk2

RS: Session handle1, rqSWID, netFn/rsLUN,
chk1, rsSWID or rsSA, rqSeq/rsLUN, cmd,
completion code, <data>, chk2

NOTE:

Terminal mode has a single, fixed
SWID for the remote console.
Software using send message to
deliver a message to a terminal mode
remote console should use their
SWID or slave address as the source
of the request or response, and the
terminal mode SWID (40h) as the
destination.

6 Other LAN IPMB RQ: Session handle1, rsSWID, netFn/
rsLUN, chk1, rqSWID or rqSA, rqSeq/
rqLUN, cmd, <data>, chk2

RS: Session handle1, rqSWID, netFn/rsLUN,
chk1, rsSWID or rsSA, rqSeq/rsLUN, cmd,
completion code, <data>, chk2

7 PCI SMBus IPMI-SMBus RQ: rsSA, netFn/rsLUN, chk1, rqSA, rqSeq/
rqLUN, cmd, <data>, chk2

RS: rqSA, netFn/rqLUN, chk1, rsSA, rqSeq/
rsLUN, cmd, completion code, <data>, chk2

8 SMBus v1.0/1.1

9 SMBus v2.0

10 Reserved for USB
1.x

n/a n/a

11 Reserved for USB
2.x

n/a n/a

12 System interface RQ: rsSA, netFn/rsLUN, chk1, rqSA, rqSeq/
rqLUN, cmd, <data>, chk2

RS: rqSA, netFn/rqLUN, chk1, rsSA, rqSeq/
rsLUN, cmd, completion code, <data>, chk2

NOTE:

MC adds session handle information
when it puts the message into the
receive message queue .

Command specification 49



Target channel type Target channel protocol Message data for sending requests (RQ)
and responses (RS)

1 The session handle identifies a particular active session on the given channel. The MC assigns a different
value to each time a new session is activated. A typical implementation keeps track of the last value that
was assigned and increment it before assigning it to a new active session when the activate session
command has been accepted. Software must include this field for channels where the get channel info
command indicates that the channel supports sessions.

Table Continued

Get system GUID command
This command is available to the MC.

This optional, though highly recommended, command can be used to return a GUID (also known as a UUID),
for the managed system to support the remote discovery process and other operations. The format of the ID
follows the octet format specified in [RFC 4122]. [RFC4122] specifies four different versions of UUID formats
and generation algorithms suitable for use for a GUID in IPMI.

• Time based — version 1 (0001b)
• Name based:

◦ version 3 (0011b) MD5 hash
◦ version 4 (0100b) Pseudo-random
◦ version 5 SHA1 hash

[SMBIOS] does not specify a particular specification or version for UUID generation. In general, if it remains
unspecified, the version 1 format is recommended by the IPMI specification for new system implementations.
However, versions 3, 4, or 5 formats are also allowed. A system GUID should not change over the lifetime of
the system.

If the MC is on a removable card that can be moved to another system, the vendor of the card or system
vendor should provide a mechanism for generating a new system GUID or retrieving the SMBIOS UUID from
the given system.

Since the GUID is typically permanently assigned to a system, an interface that would allow the GUID to be
configured or changed is not specified. For systems that support [SMBIOS], the system GUID that is returned
by the MC should match the UUID field value in the SMBIOS system information (type 1) record.

The session header (session request data and session response data) values shown in the following table
illustrate the values that would be used to execute a get system GUID command outside of an active
session. The get system GUID is always accepted outside of an active session. The get system GUID
command can also be executed within the context of an active session (providing the user is operating at
higher than callback privilege). When the get system GUID command is executed in the context of an
active session, the session header fields must have correct values according to the authentication, session
ID, and session sequence number information that was negotiated for the session.

Session header fields request and response data prior when used prior to session activation

authentication type = NONE

session seq# = null (0’s)

Session ID = null (0’s)

AuthCode = NOT PRESENT

50  Get system GUID command



Table 21: Get system GUID command response data

Response
data byte
number

Data field

1 Completion code

2:17 GUID bytes 1 through 16.

Set system info parameters command
This command is available to the MC.

This command is used for setting system information parameters such as system name and BIOS/system
firmware revision information.

Table 22: Set system info parameters command request and response data

Request
data byte
number

Data field

1 Parameter selector

2:n Configuration parameter data, per Get system info parameters command.

Response
data byte
number

Data field

1 Completion

code. Generic plus the following command-specific completion codes:

• 80h = parameter not supported
• 81h = attempt to set the set in progress value (in parameter #0) when not in the set

complete state. (This completion code provides a way to recognize that another party has
already claimed the parameters).

• 82h = attempt to write read-only parameter

Get system info parameters command
This command is available to the MC.

This command is used for retrieving system information parameters from the set system info parameters
command.

Set system info parameters command 51



Table 23: Get system info parameters command request and response data

Request data
byte number

Data field

1 [7]

• 0b = get parameter
• 1b = get parameter revision only

[6:0] — reserved

2 Parameter selector

3 Set selector. Selects a given set of parameters under a given parameter selector value.
00h if parameter does not use a set selector.

4 Block selector (00h if parameter does not require a block number)

Response
data byte
number

Data field

1 Completion code

Generic codes, plus the command-specific completion code: 80h = parameter not
supported.

2 [7:0] — Parameter revision. Format:

• MSN = present revision
• LSN = oldest revision parameter that is backward compatible
• 11h for parameters in this specification

The following data bytes are not returned when the get parameter revision only bit is 1b.

3:N Configuration parameter data, per the following System info parameters table.

. If the rollback feature is implemented, the MC makes a copy of the existing parameters
when the set in progress state becomes asserted. (See the set in progress parameter #0).
While the set in progress state is active, the MC returns data from this copy of the
parameters, plus any uncommitted changes that were made to the data. Otherwise, the
MC returns parameter data from non-volatile storage.

52 Command specification



Table 24: System info parameters

Parameter # Parameter data (non-volatile unless otherwise noted)1

Set in progress (volatile) 0 Data 1 - This parameter is used to indicate when any of the following
parameters are being updated, and when the updates are completed.
The bit is primarily provided to alert software that some other software
or utility is in the process of making changes to the data.

An implementation can also elect to provide a rollback feature that uses
this information to decide whether to roll back to the previous
configuration information, or to accept the configuration change.

If used, the roll back restores all parameters to their previous state.
Otherwise, the change takes effect when the write occurs.

[7:2] Reserved

[1:0] 00b = Set complete. If a system reset or transition
to powered down state occurs while set in
progress is active, the MC goes to the set
complete state. If rollback is implemented,
going directly to set complete without first
doing a commit write causes any pending
write data to be discarded.

01b = Set in progress indicating that some utility
or other software is presently doing writes
to parameter data. It is a notification flag
only, it is not a resource lock. The MC does
not provide any interlock mechanism that
would prevent other software from writing
parameter data while set in progress value
is present on these bits.

10b = Commit write (optional). This is only used if
a rollback is implemented. The MC saves
the data that has been written since the last
time the set in progress and then go to the
set in progress state. An error completion
code is returned if this option is not
supported.

11b = Reserved

Table Continued

Command specification 53



Parameter # Parameter data (non-volatile unless otherwise noted)1

System firmware version 1 System firmware version string in text. System firmware that requires
multiple strings to represent version information can separate those
strings using 00h as the delimiter for ASCII+LATIN1 and UTF-8
encoded string data, or 0000h for UNICODE encoded string data. For
IA32 and EMT64 utilizing non-EFI system firmware, it is recommended
that four blocks (64 bytes) of storage be provided. For EFI-based
systems, 256 bytes is recommended.

NOTE:

System firmware may optionally include a routine that checks
during POST to see if this parameter is up-to-date with the
present firmware version, and if not, update it automatically.
Other implementations may elect to automatically update this
parameter when system firmware updates occur.

Data 1 — set selector = 16-byte data block number to access, 0
based. Two data blocks (32-bytes) for string data required,
at least three recommended. Number of effective characters
is dependent on the encoding selected in string data byte 1.

Data 2:17
—

16-byte block for system firmware name string data

For the first block of string data (set selector = 0), the first
two bytes indicate the encoding of the string and its overall
length as follows:

String data byte 1:

• [7:4] — Reserved
• [3:0] — Encoding

◦ 0h = ASCII+Latin1
◦ 1h = UTF-8
◦ 2h = UNICODE
◦ All other = Reserved

String data byte 2:

• [7:0] - String length (in bytes, 1-based)

System name 2 System name. A name for the overall system to be associated with the
MC. This may or may not match other names that are used for the
system.

Data 1 — set selector = 16-byte data block number to access, 0
based. Two data blocks (32-bytes) for string data required,
at least three recommended. Number of effective characters
will be dependent on the encoding selected in string data
byte 1.

Table Continued

54 Command specification



Parameter # Parameter data (non-volatile unless otherwise noted)1

Data 2:17
-

16-byte block for system name string data

For the first block of string data (set selector = 0), the first
two string data bytes indicate the encoding of the string and
its overall length as follows. There is no required value to be
set or used for any bytes that are past the string length.

String data byte 1:

• [7:4] — Reserved
• [3:0] — Encoding

◦ 0h = ASCII+Latin1
◦ 1h = UTF-8
◦ 2h = UNICODE
◦ All other = Reserved

String data byte 2:

• [7:0] - String length (in bytes, 1-based)

Primary operating system
name (non-volatile)

3 Primary operating system name. The OS that the system boots to for
this MC according to the default configuration of its system firmware. In
systems that may have multiple physical partitions, this reflects the OS
for the partition that holds the given MC. For systems that have virtual
machine capability being utilized (where more than one virtual systems
may be sharing a physical MC), it is recommended that this value hold
the name of the virtual machine monitor (VMM) software or VMM type).

Data 1 Set selector = 16-byte data block number to access, 0
based. Two data blocks (32-bytes) for string data required,
at least three recommended. Number of effective characters
will be dependent on the encoding selected in string data
byte 1.

Data 2:17 16-byte block for system name string data

For the first block of string data (set selector = 0), the first
two bytes indicate the encoding of the string and its overall
length as follows. There is no required value to be set or
used for any bytes that are past the string length.

String data byte 1:

• [7:4] — Reserved
• [3:0] — Encoding

◦ 0h = ASCII+Latin1
◦ 1h = UTF-8 (ls-byte first)
◦ 2h = UNICODE (ls-byte first)
◦ All other = Reserved

String data byte 2:

• [7:0] - string length (in bytes, 1-based)

Table Continued

Command specification 55



Parameter # Parameter data (non-volatile unless otherwise noted)1

Operating system name
(volatile)

4 Present operating system name. The name of the operating system
that is presently running and able to access this MC’s system interface.
The MC automatically clears this value by zeroing out the string length
on system power cycles and resets.

In systems that may have multiple physical partitions, this reflects the
OS for the partition that holds the given MC. For systems that have
virtual machine capability being utilized (where more than one virtual
systems may be sharing a physical MC), it is recommended that this
value hold the name of the virtual machine monitor (VMM) software or
VMM type.

Data 1 Set selector = 16-byte data block number to access, 0
based. Two data blocks (32-bytes) for string data required,
at least three recommended. Number of effective characters
is dependent on the encoding selected in string data byte 1.

Data 2:17 16-byte block for system name string data

For the first block of string data (set selector = 0), the first
two bytes indicate the encoding of the string and its overall
length as follows. There is no required value to be set or
used for any bytes that are past the string length.

String data byte 1:

• [7:4] — Reserved
• [3:0] — Encoding

◦ 0h = ASCII+Latin1
◦ 1h = UTF-8
◦ 2h = UNICODE
◦ All other = Reserved

String data byte 2:

• [7:0] - String length (in bytes, 1-based)

OEM 192
…
255

This range is available for special OEM system information parameters.

1 Choice of system manufacturing defaults for non-volatile parameters is left to the system manufacturer
unless otherwise specified.

Master write-read command
This command can be used for low-level I2C/SMBus write, read, or write-read access to the IPMB or private
busses behind a management controller. The command can also be used for providing low-level access to
devices that provide an SMBus slave interface.

NOTE:

In HPE iLO, this command is not available over LAN.

56  Master write-read command



Table 25: Master write-read command request and response data

IPMI request
data byte
number

Data field

1 Bus ID:

[7:4] Channel number (ignored when bus type=1b

[3:1] Bus ID, 0–based (always 000b for public bus ([bus type=0b])

[0] Bus type:

0b = Public (for example, IPMB or PIC Management) bus. The channel
number value is used to select the target bus.

1b = Private bus (the bus ID value is used to select the target bus.)

2 Requested maximum privilege level

[7:1] Slave address

[0] Reserved. Write a 0.

3 Read count. Number of bytes to read, 1 based. 0 equals not bytes to read.

The maximum read count should be at least 34 bytes.

This allows the command to be used for an SMBus Block Read. This is required if the
command provides access to an SMBus or IPMB. Otherwise, if FRU SEEPROM devices are
accessible, at least 31 bytes must be supported. Note than an implementation that supports
fewer bytes can be supported if none of the devices to be accessed can handle the
recommended minimum.

4:N Data to write. This command should support

at least 35 bytes

of write data. This allows the command to be used for an SMBus Block Write with PEC.
Otherwise, if FRU SEEPROM devices are accessible, at least 31 bytes must be supported.
Note that an implementation is allowed to support fewer bytes if none of the devices to can
handle the recommended minimum.

IPMI
response
data byte
number

Data field

Table Continued

Command specification 57



1 Completion code

A management controller shall return an error Completion Code if an attempt is made to
access an unsupported bus. This is a generic response but also may include the following
command specific codes:

• 81h—Lost arbitration
• 82h—Bus error
• 83h—NAK on write
• 84h—Truncated read

(2:M) Bytes read from specified slave address. This field will be absent if the read count is 0. The
controller terminates the I2C transaction with a STOP condition after reading the requested
number of bytes.

Get channel authentication capabilities command
This command is available to the MC.

This command is sent in unauthenticated (clear) format. This command is used to retrieve capability
information about the channel from which the message is delivered, or for a particular channel. The command
returns the authentication algorithm support for the given privilege level. When activating a session, the
privilege level passed in this command is normally the same requested maximum privilege level that is used
for a subsequent activate session command.

MC implementations of IP-based channels must support the get channel authentication
capabilities command using the IPMI v1.5 packet format. BMCs that support IPMI v2.0 RMCP+ must
also support the command using the IPMI v2.0/RMCP+ format.

The get channel authentication capabilities command can also be used as a no-op “ping” to
keep a session from timing out.

Session header fields request and response data prior when used prior to session activation

authentication type = NONE/payload type = IPMI message

session seq# = null (0’s)

Session ID = null (0’s)

AuthCode = NOT PRESENT

Table 26: Get channel authentication capabilities command request and response
data

IPMI request
data byte
number

Data field

1 Channel number

[7] 1b = Get IPMI v2.0+ extended data. If the given channel supports
authentication but does not support RMCP+ (such as a serial
channel), then the response data should return with bit [5] of byte 4 =
0b, byte 5 should return 01h,

Table Continued

58  Get channel authentication capabilities command



0b = Backward compatible with IPMI v1.5. Result response data only
returns bytes 1:9, bit [7] of byte 3 (authentication type support) and bit
[5] of byte 4 returns as 0b, bit [5] of byte 5 returns 00h.

[6:4] Reserved

[3:0] Channel number

0hBh, Fh
=

Channel numbers

Eh = Retrieve information for the channel from which this request was
issued.

2 Requested maximum privilege level

[7:4] Rreserved

[3:0] Requested privilege level

0h = Reserved

1h = Callback level

2h = User level

3h = Operator level

4h = Administrator level

5h = OEM proprietary level

IPMI
response
data byte
number

Data field

1 Completion code

2 Channel number on which the authentication capabilities is being returned. If the channel
number in the request was set to Eh, this returns the channel number for the channel where
the request was received.

3 Authentication type support. Returns the setting of the authentication type enable field from
the configuration parameters for the given channel that corresponds to the requested
maximum privilege level.

[7] 1b = IPMI v2.0+ extended capabilities available. See Extended capabilities
field below.

0b = IPMI v1.5 support only.

[6] Reserved

Table Continued

Command specification 59



[5:0] IPMI v1.5 authentication type(s) enabled for given requested maximum privilege
level.

All bits: 1b = Supported

0b = Authentication type not available for use

[5] OEM proprietary (per OEM identified by the IANA OEM ID in the
RMCP ping response)

[4] Straight password / key

[3] Reserved

[2] MD5

[1] MD2

[0] None

4 [7:6] Reserved

[5] KG status (two-key login status). Applies to v2.0/RMCP+ RAKP authentication
only. Otherwise, ignore as reserved.

0b = KG is set to default (all 0’s). User key KUID is used in place of KG in
RAKP. (Knowledge of KG not required for activating session.)

1b = KG is set to non-zero value. (Knowledge of both KG and user
password (if not anonymous login) required for activating session.)

Following bits apply to IPMI v1.5 and v2.0:

[4] Per-message authentication status

0b = Per-message authentication is enabled. Packets to the MC must be
authenticated per authentication type used to activate the session,
and the user level authentication setting.

1b = Per-message authentication is disabled. Authentication type none
accepted for packets to the MC after the session has been activated.

[3] User level authentication status

0b = User level authentication is enabled. User level commands must be
authenticated per authentication type used to activate the session.

1b = User level authentication is disabled. Authentication type none
accepted for user level commands to the MC.

Table Continued

60 Command specification



[2:0] Anonymous login status. This parameter returns values that tells the remote
console whether there are users on the system that have ‘null’ usernames. This
can be used to guide the way the remote console presents login options to the
user.

[2] 1b = Non-null usernames enabled. (One or more users are enabled
that have non-null usernames).

[1] 1b = Null usernames enabled. (One or more users that have a null
username, but non-null password, are presently enabled).

[0] 1b = Anonymous login enabled. (A user that has a null username and
null password is presently enabled).

5 For IPMI v1.5: - Reserved

For IPMI v2.0+: - Extended capabilities

[7:2] Reserved

[1] 1b = Channel supports IPMI v2.0 connections

[0] 1b = Channel supports IPMI v1.5 connections

6:8 OEM ID. IANA enterprise number for OEM/Organization that specified the particular OEM
authentication type for RMCP. Least significant byte first. Return 00h, 00h, 00h if no OEM
authentication type available.

9 OEM auxiliary data. Additional OEM-specific information for the OEM authentication type for
RMCP. Return 00h if no OEM authentication type available.

Get Channel Cipher Suites Command
This command can be executed prior to establishing a session with the MC. The command is used to look up
what authentication, integrity, and confidentiality algorithms are supported. The algorithms are used in
combination as ‘Cipher Suites’. This command only applies to implementations that support IPMI v2.0/RMCP
+ sessions.

The data is accessed 16-bytes at a time starting from List Index field value of 0 in the request and then
repeating the request incrementing the List Index field each time until fewer than 16-bytes of algorithm data
(or no algorithm data) is returned in the response, or the maximum List Index value has been reached.

A given Cipher Suite may only be available for establishing a session at a particular maximum privilege level
or lower. For example, a Cipher Suite that has a privilege level of ‘Admin’ can therefore be used for any
privilege level, while a privilege level of User can only be used for establish sessions with a Maximum
Requested Privilege Level of User or Callback.

Because the authentication algorithm specifies the steps for authenticating the user, it is a necessary part of
session establishment. Therefore an authentication algorithm number is required for all Cipher Suites. It is
possible that a given Cipher Suite may not specify use of an integrity or confidentiality algorithm. If the Cipher
Suite has integrity and/or confidentiality of 'none', then all the same steps for establishing a session are used
(open session request/response, RAKP messages) - but the integrity (AuthCode) and confidentiality fields will
be absent in packets for that are sent under the session.

Get Channel Cipher Suites Command 61



Table 27: Get channel cipher suites command request and response data

IPMI Request
Data Byte

Data field

1 Channel Number

[7:4] Reserved

[3:0] Channel number

0h-Bh, Fh = Channel numbers

Eh = retrieve information for channel this request was issued on.

2 Payload Type.

[7:6] - reserved

[5:0] - Payload Type number

Typically 00h (IPMI).

The Payload Type number is used to look up the Security Algorithm support when
establishing a separate session for a given payload type.

3 List Index.

[7] 1b = list algorithms by Cipher Suite

0b = list supported algorithms1

[6] Reserved

[5:0] List index (00h-3Fh). 0h selects the first set of 16, 1h selects the next set of 16,
and so on.

00h = Get first set of algorithm numbers. The MC returns sixteen (16) bytes at a
time per index, starting from index 00h, until the list data is exhausted, at which
point it will 0 bytes or <16 bytes of list data.

IPMI
Response
Data Byte

Data field

1 Completion Code

Table Continued

62 Command specification



2 Channel Number

Channel number that the Authentication Algorithms are being returned for. If the channel
number in the request was set to Eh, this will return the channel number for the channel
that the request was received on.

(3:18) Cipher Suite Record data bytes, per Table 22-18, Cipher Suite Record

Format. Record data is ‘packed’; there are no pad bytes between records. It is possible
that record data will span across multiple List Index values.

The MC returns sixteen (16) bytes at a time per index, starting from index

00h, until the list data is exhausted, at which point it will 0 bytes or <16 bytes of list data.

1 When listing numbers for supported algorithms, the MC returns a list of the algorithm numbers for each
algorithm that the MC supports on a given channel. Each algorithm is listed consecutively and only listed
once. There is no requirement that the MC return the algorithm numbers in any specific order.

Cipher suite records
The data from the Get Channel Cipher Suites command is issued as Cipher Suite records. Tag bits are used
to delimit different fields in the record. Each record starts off with a “Start Of Record” byte. This byte can be
30h or 31h, indicating that the Start Of Record byte is followed either by an Cipher Suite ID, or by a OEM
Cipher Suite ID plus OEM IANA.

Following the header bytes are algorithm number bytes for the different algorithms that form the Cipher Suite.
Each byte is tagged with the type of algorithm the number is for. Cipher Suite records are required to list
algorithms in the order: Authentication Algorithm number first, Integrity Algorithm numbers next, and
Confidentiality Algorithm numbers last.

If more than one algorithm of a given type is listed in the Cipher Suite Record, then any one of the algorithms
can be used in combination with the other types. For example, if a Cipher Suite response returns both MD5
and MD2 as Authentication and Integrity algorithms, and xRC4 for confidentiality, then the allowed
combinations are [MD2, MD2, xRC4], [MD2, MD5, xRC4], [MD5, MD2, xRC4], and [MD5, MD5, xRC4]. A
remote console can negotiate for those combinations when establishing a session.

Command specification 63



Table 28: Cipher suite record format

Size Tag bits
[7:6]

Tag bits

[5:0]

2 or 5 This field starts off with either a C0h or C1h "Start of Record" byte, depending on
whether the Cipher Suite is a standard Cipher Suite ID or an OEM Cipher Suite,
respectively.

Standard cipher suite ID

• Byte 1:

[7:0] = 1100_0000b. Start of Record, Standard Cipher Suite.
• Byte 2 (Data following C0h (1100_0000b) start of record byte):

Cipher Suite ID—This value is used a numeric way of identifying the Cipher Suite
on the platform. It’s used in commands and configuration parameters that enable
and disable Cipher Suites.

OEM cipher suite

• Byte 1:

[5:0] = 1100_0001b — Start of Record, OEM Cipher Suite.
• Byte 2 (Data following C1h (1100_0001) start of record byte):

OEM Cipher Suite ID

Byte 3:5 - OEM IANA

Least significant byte first. 3-byte IANA for the OEM or body that defined the Cipher

Suite.

1 00b [5:0] = Authentication Algorithm Number.

A Cipher Suite is only allowed to utilize one Authentication algorithm.

var 01b [5:0] = Integrity Algorithm Number(s).

var 10b [5:0] = Confidentiality Algorithm Number(s).

Cipher suite ID numbers
The following table provides the number ranges and assignments for Cipher Suite IDs. The Cipher Suite ID
values are used as a way to identify different Cipher Suites in configuration parameters and IPMI commands.

The OEM IDs do not correspond to a particular Cipher Suite, but are handles that can be used to identify the
Cipher Suite on a particular implementation of a MC. I.e. the OEM Cipher Suite corresponding to “80h” can be
different from one MC to the next. These handles can, however, be used in configuration parameters and
commands the same way as the IPMI-defined Cipher Suite IDs.

The Get Channel Cipher Suites command will return the algorithms used to form a given Cipher Suite (those
numbers can then be used by a remote console in the commands for establishing a session). For OEM
defined Cipher Suites, the Get Channel Cipher Suites command will also return the IANA for the OEM or body
that defined the Cipher Suite.

64 Command specification



Table 29: Cipher suite ID numbers

ID Characteristics Cipher Suite Authentication
Algorithm

Integrity
Algorithm(s)

Confidentiality
Algorithm(s)

0 no password 00h, 00h, 00h RAKP-none None None

1 S 01h, 00h, 00h RAKP-HMAC-
SHA1

None None

2 S, A 01h, 01h, 00h HMAC-SHA1-96 None

3 S, A, E 01h, 01h, 01h AES-CBC-128

4 S, A, E 01h, 01h, 02h xRC4-128

5 S, A, E 01h, 01h, 03h xRC4-40

6 S 02h, 00h, 00h RAKP-HMAC-
MD5

None None

7 S, A 02h, 02h, 00h HMAC-MD5-128 None

8 S, A, E 02h, 02h, 01h AES-CBC-128

9 S, A, E 02h, 02h, 02h xRC4-128

10 S, A, E 02h, 02h, 03h xRC4-40

11 S, A 02h, 03h, 00h MD5-128 None

12 S, A, E 02h, 03h, 01h AES-CBC-128

13 S, A, E 02h, 03h, 02h xRC4-128

14 S, A, E 02h, 03h, 03h xRC4-40

80h-
BFh

OEM specified OEM specified OEM specified OEM specified OEM specified

C0h-
FFh

reserved - - - -

Key:

S = Authenticated session setup (correct role, username and password/key required to establish
session.)

A = Authenticated payload data supported.

E = Authentication and encrypted payload data supported.

Set session privilege level command
This command is available to the MC.

This command is sent in authenticated format. When a session is activated, the session is set to an initial
privilege level. A session that is activated at a maximum privilege level of callback is set to an initial privilege

Set session privilege level command 65



level of callback and cannot be changed. All other sessions are initially set to user level, regardless of the
maximum privilege level requested in the activate session command. The remote console must raise
the privilege level of the session using this command in order to execute commands that require a greater-
than-user level of privilege.

This command cannot be used to set a privilege level higher than the lowest of the privilege level set for the
user (via the set user access command) and the privilege limit for the channel that was set via the set
channel access command. The specification allows a session to be used across multiple channels. The
maximum privilege limit and authentication are based on the user privilege and channel limits. Since these
can vary on a per channel basis, an implementation cannot simply assign a single privilege limit to a given
session but must authenticate incoming messages according to the specific settings for the channel and the
user on a per-channel basis.

Table 30: Set session privilege level command request and response data

IPMI request
data byte
number

Data field

1 Requested privilege level

• [7:4] — Reserved
• [3:0] — Privilege level

◦ 0h — No change, just return present privilege level
◦ 1h — Reserved
◦ 2h — Change to user level
◦ 3h — Change to operator level
◦ 4h — Change to administrator level
◦ 5h — Change to OEM proprietary level
◦ All other = Reserved

IPMI
response
data byte
number

Data field

1 Completion code. Generic, plus following command specific:

• 80h = Requested level not available for this user
• 81h = Requested level exceeds channel and/or user privilege limit
• 82h = Cannot disable user level authentication

2 New privilege level (or present level if return present privilege level was selected.)

Close session command
This command is used to immediately terminate a session in progress. It is typically used to close the session
that the user is communicating over, though it can be used to terminate other sessions in progress (provided
that the user is operating at the appropriate privilege level, or the command is executed over a local channel,
such as the system interface).

66  Close session command



Table 31: Close session command request and response data

IPMI request
data byte
number

Data field

1:4 Session ID. For IPMI v2.0/RMCP+ this is the Managed System Session ID value that was
generated by the MC, not the ID from the remote console. If Session ID = 0000_0000h then
an implementation can optionally enable this command to take an additional byte of
parameter data that allows a session handle to be used to close a session.

(5) Session Handle. Only present if Session ID = 0000_0000h.

IPMI
response
data byte
number

Data field

1 Completion code.

• 87h = Invalid session ID in request
• 88h = Invalid Session Handle in request
• 82h = Cannot disable user level authentication

Get session info command
This command is available to the MC.

This command is used to get information regarding which users presently have active sessions, and, when
available, addressing information for the party that has established the session. A portion of the response is
dependent on the type of channel.

For IPMI v2.0, a previously reserved field has been defined to hold a value indicating whether a session
operating on a channel of channel type = 802.3 LAN is presently using IPMI v1.5 or v2.0/RMCP+ protocols.

Table 32: Get session info command request and response data

IPMI request
data byte
number

Data field

1 Session index. This value is used to select entries in a logical sessions table maintained by
the management controller. Information for all active sessions can be retrieved by
incrementing the session index from 1 to N, where N is the number of entries in the active
sessions table.

• 00h = Return information for the active session associated with the session where this
command was received.

• N = Get information for Nth active session
• FEh = Look up session information according to the session handle passed in this

request.
• FFh = Look up session information according to the session ID passed in this request.

Present if session index = FEh

Table Continued

Get session info command 67



2 Session handle. 00h = reserved.

Present if session index = FFh:

2:5 Session ID. ID of session to look up session information. For IPMI v2.0/RMCP+ this is the
session ID value that was generated by the MC, not the ID from the remote console.

IPMI
response
data byte
number

Data field

1 Completion code

2 Session handle presently assigned to active session. FFh = reserved. Return 00h if no active
session associated with given session index.

3 Number of possible active sessions. This value reflects the number of possible entries (slots)
in the sessions table.

• [7:6] — Reserved
• [5:0] — Session slot count. 1-based.

4 Number of currently active sessions on all channels on this controller.

• [7:6] — Reserved
• [5:0] — Active session count. 1-based. 0=no currently active sessions.

The following parameters are returned only if there is an active session corresponding to the given session
index:

5 User ID for selected active session.

• [7:6] — Reserved
• [5:0] — User ID. 000000b = reserved.

6 Operating privilege level

• [7:4] — Reserved
• [3:0] — Ppresent privilege level at which the user is operating.

7 [7:4] — Session protocol auxiliary data. For channel type = 802.3 LAN:

• 0h = IPMI v1.5
• 1h = IPMI v2.0/RMCP+

Channel in which the session was activated.

[3:0] - Channel number

The following bytes 8:18 are optionally returned if channel type = 802.3 LAN:

8:11 IP address of remote console (MS-byte first). Address that was received in the

activate session
command that activated the session

Table Continued

68 Command specification



12:17 MAC address (MS-byte first). Address that was received in the

activate session
command that activated the session.

18:19 Port number of remote console (LS-byte first). Port number that was received in UDP packet
that held the

activate session
command that activated the session (for IPMI v1.5 packets) or that was used for in the
packet for RAKP Message 3 (for IPMI v2.0 / RMCP+ packets).

The following bytes 8:13 are returned if channel type = asynch. serial/modem:

8 Session/channel activity type:

• 0 = IPMI messaging session active
• 1 = Callback messaging session active
• 2 = Dial-out alert active
• 3 = TAP page active

9 Destination selector for active call-out session. 0 otherwise.

• [7:4] - Reserved
• [3:0] - Destination selector. Destination 0 is always present as a volatile destination that is

used with the

alert immediate
command.

10:13 If PPP connection, the IP address of the remote console. (MS-byte first). 00h, 00h, 00h, 00h
otherwise.

The following additional bytes 14:15 are returned if channel type = asynch. serial/modem and connection is
PPP:

14:15 Port address of remote console (LS-byte first). Address that was received in the

activate session
command that activated the session.

Get AuthCode command
This command is available to the MC.

This command is used to send a block of data to the MC, whereupon the MC returns a hash of the data
together concatenated with the internally stored password for the given channel and user. This command
allows a remote console to send an AuthCode and data block to system software on a remote platform,
whereby the system software can validate the AuthCode by comparing it with the AuthCode returned by the
MC. This enables the MC to serve as a validation agent for remote requests that come through local system
software instead of through a remote session directly with the MC.

The following is an outline of potential use of this capability. Remote console software could request that
system software perform a particular operation. In response, local system software could deliver a challenge
string to the remote console, which would be required to hash it with the desired password and return the
AuthCode to the local system software. The local system software would then perform the requested
operation only if it found that the AuthCode matched the one returned by the MC. The local software would

Get AuthCode command 69



typically implement mechanisms to bind the challenge string to the requested operation to ensure that the
challenge string and AuthCode combination only applied to a given instance of the requested operation, and
even from a particular remote console.

• Managed system delivers a random number token, S, to the console. In this example, the console uses S
to identify a particular request. The managed system tracks outstanding S values, and expires them either
because a valid message was received from a console that used that token, or because the token was not
used within a specified interval.

• Console determines: X = data to be authenticated

◦ K1 = 16-byte signature of X and a sequence number = hash(X, S, SW_Authentication_Type). Where
SW_Authentication_Type is any signature algorithm management software wishes to use for providing
a signature given X and S.

◦ K2 = 16-byte hash of K1 and the password = hash(K1, PWD, Authentication_Type). Where
Authentication_Type in this case is one of the supported authentication types for the given MC.

• Console sends X, S, and K2 to software agents on the managed system.
• Software agent on the managed system calculates K1 from X and S that it received by locally calculating

K1=hash1(X, S, SW_Authentication_Type). The software also verifies that S is a valid outstanding token.
• Managed system passes K1 to MC. MC internally looks up password based on the user ID passed in the

get authcode
command and produces: K2

BMC

= hash(K1, PWD, Authentication_Type).
• Managed system accepts data if software agents finds that K2 = K2

BMC

.

70 Command specification



Table 33: Get AuthCode command request and response data

IPMI request
data byte
number

Data field

1 [7:6] - Authentication type / Integrity algorithm number

• 00b = IPMI v1.5 AuthCode algorithms
• 01b = IPMI v2.0/RMCP+ algorithm number

For [7:6] = 00b, IPMI v1.5 AuthCode number:

• [5:4] - Reserved
• [3:0] - Hash type

◦ 0h = Reserved
◦ 1h = MD2
◦ 2h = MD5
◦ 3h = Reserved
◦ 4h = Reserved (change from IPMI v1.5). This results in an error completion code.
◦ 5h = OEM proprietary
◦ All other = Reserved

For [7:6] = 01b, IPMI v2.0/RMCP+ Integrity algorithm number

• 5:0] - Integrity algorithm number. The user password is used as the starting key for the
Integrity algorithm, instead of session-dependent keys such as the session integrity key.
The “none” Integrity number (0) is illegal and results in an error completion code.

2 Channel number

• [7:4] - Reserved
• [3:0] - Channel number

3 User ID. (Software will typically have to use the

get user name
command to look up the user ID from a user name).

4:19 Data to hash (must be 16 bytes).

IPMI
response
data byte
number

Data field

1 Completion code.

For IPMI v1.5 AuthCode number:

2:17 AuthCode =

Table Continued

Command specification 71



For IPMI v2.0 Integrity algorithm number

(2:21) Resultant hash, per selected Integrity algorithm. Up to 20 bytes. An implementation can elect
to return a variable length field based on the size of the hash for the given integrity algorithm,
or can return a fixed field where the hash data is followed by 00h bytes as needed to pad the
data to 20 bytes.

Set channel access command
This command is available to the MC.

This command is used to configure whether channels are enabled or disabled, whether alerting is enabled or
disabled for a channel, and to set which system modes channels are available under. This configuration is
saved in non-volatile storage associated with the MC. The choice of factory default setting for the non-volatile
parameters is left to the implementer or system integrator.

The active (volatile) settings can be overwritten to allow run-time software to make temporary changes to the
access. The volatile settings are overwritten from the non-volatile settings whenever the system is reset or
transitions to a powered off state.

An implementation can elect to provide a subset of the possible access mode options. If a given access mode
is not supported, the command-specific completion code 83h (access mode not supported) must be returned.

Table 34: Set channel access command request and response data

Request data
byte number

Data field

1 [7:4] — Reserved

[3:0] — Channel number

2 [7:6] 00b = Do not set or change channel access.

01b = Set non-volatile channel access according to bits [5:0].

10b = Set volatile (active) setting of channel access according to bits [5:0].

11b = Reserved.

[5] PEF alerting enable/disable. This bit globally gates whether PEF alerts can be
issued from the given channel. Setting this to enable PEF alerting is a necessary
part of enabling alerts for the channel, but for alerts to be generated, the PEF and
channel configuration must also be set to enable alerting. Setting this bit to
enable does not alter the PEF configuration or the alerting settings in the
channel's configuration parameters. For example, if PEF is not configured for
generating an alert, enabling PEF alerting with this bit does not change that
configuration. Setting this bit to disable blocks PEF -generated alerts regardless
of the PEF and channel configuration parameters.

0b = Enable PEF alerting.

Table Continued

72  Set channel access command



1b = Disable PEF alerting on this channel. The

alert immediate
command can still be used to generate alerts.

[4] Per-message authentication enable/disable. This bit is ignored for channels (such
as serial/modem) that do not support per-message authentication.

0b = Enable per-message authentication.

1b = Disable per-message authentication. Authentication is required to
activate any session on this channel, but authentication is not used
on subsequent packets for the session.

[3] User level authentication enable/disable. Optional. Return a CCh invalid data field
error completion code if an attempt is made to set this bit, but the option is not
supported.

0b = Enable user level authentication. All user level commands are to be
authenticated per the authentication type that was negotiated when
the session was activated.

1b = Disable user level authentication. Allow user level commands to be
executed without being authenticated.

If the option to disable user level command authentication is
accepted, the MC will accept packets with authentication type set to
none if they contain user level commands.

For outgoing packets, the MC returns responses with the same
authentication type that was used for the request.

[2:0] Access mode for IPMI messaging. (PEF alerting is enabled/disabled separately
from IPMI messaging, see bit 5).

000b = Disabled. Channel disabled for IPMI messaging.

001b = Pre-boot only. Channel only available when system is in a powered
down state or in BIOS before start of boot.

010b = Always available. Channel always available for communication
regardless of system mode. BIOS typically dedicates the serial
connection to the MC.

011b = Shared. Same as always available, but BIOS typically leaves the
serial port available for software use.

3 Channel privilege level limit. This value sets the maximum privilege level that can be
accepted on the specified channel.

[7:6] 00b = Do not set or change channel privilege level limit.

01b = Set non-volatile privilege level limit according to bits [3:0].

Table Continued

Command specification 73



10b = Set volatile setting of privilege level limit according to bits [3:0].

11b = Reserved.

[5:4] Reserved.

[3:0] Channel privilege level limit.

0h = Reserved.

1h = Callback level.

2h = User level.

3h = Operator level.

4h = Administrator level.

5h = OEM proprietary level.

Response
data byte
number

Data field

1 Completion code. Generic, plus the following command-specific completion codes:

82h = Set not supported on selected channel (for example, channel is session-less).

83h = Access mode not supported.

Get channel access command
This command is available to the MC.

This command is used to return whether a given channel is enabled or disabled, whether alerting is enabled
or disabled for the entire channel, and under what system modes the channel can be accessed.

Table 35: Get channel access command request and response data

Request data
byte number

Data field

1 [7:4] — Reserved

[3:0] — Channel number

2 [7:6] 00b = Reserved

01b = Get non-volatile channel access

10b = Get present volatile (active) setting of channel access

11b = Reserved

Table Continued

74  Get channel access command



[5:0] Reserved

Response
data byte
number

Data
field

1 Completion code. Generic, plus the command-specific completion code:

82h = Command not supported for selected channel (for example, the channel is
session-less.)

2 [7:6] Reserved.

[5] 0b = Alerting enabled.

1b = Alerting disabled.

[4] Per-message authentication enable/disable. This bit is unspecified for channels
(such as serial/modem) that do not support per-message authentication.

0b = Per message authentication enabled.

1b = Per message authentication disabled.

[3] User level authentication enable

0b = User level authentication enabled.

1b = User level authentication disabled.

[2:0] Access mode

0h = Disabled. Channel disabled for communication.

1h = Pre-boot only. Channel only available when system is in a powered
down state or in BIOS before start of boot.

2h = Always available. Channel always available for communication
regardless of system mode. BIOS typically dedicates the serial
connection to the MC.

3h = Shared. Same as always available, but BIOS typically leaves the
serial port available for software use.

3 Channel privilege level limit. This value returns the maximum privilege level that can be
accepted on the specified channel.

[7:4] Reserved.

[3:0] Channel privilege level limit.

0h = Reserved.

Table Continued

Command specification 75



1h = Callback level.

2h = User level.

3h = Operator level.

4h = Administrator level.

5h = OEM proprietary level.

Get channel info command
This command returns media and protocol information about the given channel. The channel protocol may
vary with changes to the configuration parameters associated with the channel.

Table 36: Get channel info command request and response data

IPMI request
data byte
number

Data field

1 [7:4] — Reserved

[3:0] — Channel number. Use Eh to get information about the channel from which this
command is being executed.

IPMI
response
data byte
number

Data field

1 Completion code

2 [7:4] Reserved

[3:0] Actual channel number. This value typically matches the channel number passed
in the request, unless the request is for channel E, in which case the response
returns the actual channel number.

3 [7:4] Reserved

[6:0] 7-bit channel medium type

4 Channel protocol type:

[7:5] Reserved

[4:0] 5-bit channel IPMI messaging protocol type

5 Session support

[7:6] 00b = Channel is session-less

Table Continued

76  Get channel info command



01b = Channel is single-session

10b = Channel is multi-session

11b = Channel is session-based (return this value if a channel could
alternate between single- and multi-session operation, as can occur
with a serial/modem channel that supports connection mode auto-
detect)

Number of sessions that have been activated on the given channel.

[5:0] Active session count. 1-based. 00_0000b = no sessions have been activated on
this channel.

6 Vendor ID (IANA enterprise number) for OEM/organization that specified the channel
protocol. Least significant byte first. Returns the IPMI IANA for IPMI-specification defined,
non-OEM protocol type numbers other than OEM.

The IPMI enterprise number is: 7154 (decimal). This gives the values F2h, 1Bh, 00h for
bytes 6 through 8, respectively. This value is returned for all channel protocols specified in
this document, including PPP.

9:10 Auxiliary channel info

For channel = Fh (system interface):

• Byte 1: SMS interrupt type

◦ 00h-0Fh = IRQ 0 through 15, respectively
◦ 10h-13h = PCI A-D, respectively
◦ 14h = SMI
◦ 15h = SCI
◦ 20h-5Fh = System interrupt 0 through 63, respectively
◦ 60h = Assigned by ACPI / Plug ‘n Play BIOS
◦ FFh = No interrupt / unspecified
◦ All other = Reserved

• Byte 2: Event message buffer interrupt type. See values for byte 1.

For OEM channel types: Byte 1:2 = OEM specified per OEM identified by vendor ID.

All other channel types: Byte 1:2 = reserved.

Set user access command
This command is available to the MC.

This command is used to configure the privilege level and channel accessibility associated with a given user
ID. If this command is not supported, then a single null user (User 1) per channel is assumed and the
privilege level and channel access are determined solely by the settings returned by the get channel
access limits command. If implemented, this command must support at least the null user (User 1). The
number of additional users supported is left to the implementer.

Set user access command 77



NOTE:

The limits set using the set channel access command take precedence over the set user
access command settings. That is, if a given channel is limited to user level then all users are limited to
user level operation regardless of what their user access levels were set to using the set user
access command. Changes made to the user access and privilege levels may not take affect until the
next time the user establishes a session.

Table 37: Set user access command request and response data

Request data
byte number

Data field

1 [7] 0b = Do not change any of the following bits in this byte.

1b = Enable changing the following bits in this byte.

[6] User restricted to callback

0b = User privilege limit is determined by the user privilege limit
parameter, below, for both callback and non-callback connections.

1b = User privilege limit is determined by the user privilege limit
parameter for callback connections, but is restricted to callback
level for non-callback connections. Thus, a user can only initiate a
callback when they call in to the MC, but once the callback
connection has been made, the user could potentially establish a
session as an operator.

[5] User link authentication enable/disable (used to enable whether this user’s
name and password information will be used for link authentication, for example
PPP CHAP) for the given channel. Link authentication itself is a global setting
for the channel and is enabled/disabled via the serial/modem configuration
parameters.

• 0b = disable user for link authentication
• 1b = enable user for link authentication

Table Continued

78 Command specification



[4] User IPMI messaging enable/disable (used to enable/disable whether this
user’s name and password information will be used for IPMI messaging. In this
case, IPMI messaging refers to the ability to execute generic IPMI commands
that are not associated with a particular payload type. For example, if IPMI
messaging is disabled for a user, but that user is enabled for activating the SOL
payload type, then IPMI commands associated with SOL and session
management, such as

get SOL configuration parameters
and

close session
are available, but generic IPMI commands such as

get SEL time
are unavailable.)

• 0b = Disable user for IPMI messaging
• 1b = Enable user for IPMI messaging

[3:0] Channel number

2 User ID

• [7:6] — Reserved
• [5:0] — User ID. 000000b = Reserved.

3 User limits

[7:4] Reserved

[3:0] User privilege limit. Determines the maximum privilege level that the user is
allowed to switch to on the specified channel.

0h = Reserved

1h = Callback

2h = User

3h = Operator

4h = Administrator

5h = OEM proprietary

Fh = No access

(4) User session limit (optional). Sets how many simultaneous sessions can be activated with
the username associated with this user. If not supported, the username can be used to
activate as many simultaneous sessions as the implementation supports. Return a CCh
invalid data field error completion code if an attempt is made to set a non-zero value in this
field, but the option is not supported.

Table Continued

Command specification 79



[7:4] Reserved

[3:0] User simultaneous session limit. 1-based. 0h = only limited by the
implementations overall support for simultaneous sessions.

Response
data byte
number

Data field

1 Completion code.

NOTE:

An implementation does not return an error completion code if the user access level
is set higher than the privilege limit for a given channel. To bring attention to this
condition, the software must check the channel privilege limits set using the set
channel access command and provide notification of any mismatch.

Get user access command
This command is available to the MC.

This command is used to retrieve channel access information and enabled/disabled state for the given user
ID. The command also returns information about the number of supported users.

Table 38: Get user access command request and response data

Request data
byte number

Data field

1 [7:4] Reserved

[3:0] Channel number

2 [7:6] Reserved

[3:0] User ID. 000000b = reserved.

Response
data byte
number

Data field

1 Completion code.

NOTE:

An implementation does not return an error completion code if the user access level
is set higher than the privilege limit for a given channel. To bring attention to this
condition, the software must check the channel privilege limits and provide
notification of the mismatch.

Table Continued

80  Get user access command



2 Maximum number of user IDs. 1-based. Count includes User 1. A value of 1 indicates only
User 1 is supported.

• [7:6] — Reserved
• [5:0] — Maximum number of user IDs on this channel.

3 Count of currently enabled user IDs (1-based). A value of 0 indicates that all users,
including User 1, are disabled. This is equivalent to disabling access to the channel.

[7:6] User ID

enable

status (for IPMI v2.0 errata 3 and later implementations).

00b = User ID enable status unspecified. (For backward compatibility with
pre-errata 3 implementations. IPMI errata 3 and later
implementations should return the 01b and 10b responses.)

01b = User ID enabled via

set user password
command.

10b = User ID disabled via

set user password
command.

11b = Reserved.

[5:0] Count of currently enabled user IDs on this channel which indicates how many
user ID slots are presently in use.

4 Count of user IDs with fixed names, including User 1 (1-based). Fixed names in addition to
User 1 are required to be associated with sequential user IDs starting from User ID 2.

• [7:6] — Reserved
• [5:0] — Count of user IDs with fixed names on this channel.

5 Channel access

[7] Reserved

[6] 0b = User access available during call-in or callback direct connection.

1b = User access available only during callback connection.

Table Continued

Command specification 81



For pre- IPMI v2.0 errata 3 implementations: bits 5:4 are used for determining the count of
currently enabled user IDs in byte 3. Either bit being set to 1b represents an enabled user
ID.

For IPMI v2.0 errata 3 and later implementations: the count of enabled User IDs is based
on the user IDs that are presently enabled as reflected in byte 3, bits [7:6], user ID enable
status.

NOTE:

Some pre- IPMI v2.0 errata 3 implementations may automatically clear bits [5:4], and
may also prevent them from being set, while the user ID is disabled. IPMI v2.0 errata
3 and later implementations should not alter bits [5:4] based on whether or not a
user ID is enabled.

[5] 0b = User disabled for link authentication

1b = User enabled for link authentication

[4] 0b = User disabled for IPMI messaging

1b = User enabled for IPMI messaging

[3:0] User privilege limit for given channel

0h = Reserved

1h = Callback

2h = User

3h = Operator

4h = Administrator

5h = OEM proprietary

Fh = No access. This value does not add to, or subtract from, the number
of enabled user IDs

Set user name command
This command is available to the MC.

This command adds a new user ID. The names are stored as a logical array within non-volatile storage
associated with the management controller. Names are stored and retrieved using the user ID as the index
into the logical array. There is no configurable name for User ID 1. User ID 1 is reserved for the null user
name, User 1. Null user is not supported.

The management controller does not prevent duplicate user names from being enabled for the same channel.
It is the responsibility of configuration software to ensure that duplicate user names are not enabled
simultaneously for the same channel.

Having duplicate user names does not cause functional problems with the MC because the MC uses the first
username match that it finds. However, it could be confusing to the user if they have duplicate user names
enabled for a given channel, since only the settings for the first encountered user name would be used by the
MC.

82  Set user name command



This command is highly recommended for session-based channels. It is also recommended that the
implementation support multiple users with configurable user names.

Table 39: Set user name command request and response data

Request data
byte number

Data field

1 User ID

• [7:6] — Reserved
• [5:0] — User ID. 000000b = reserved. (User ID 1 is permanently associated with User 1,

the null user name).

2:17 User name string in ASCII, 16 bytes, max. Strings with fewer than 16 characters are
terminated with a null (00h) character and 00h padded to 16 bytes. When the string is read
back using the

get user name
command, those bytes return as 0’s.

Response
data byte
number

Data field

1 Completion code.

Get user name command
This command is available to the MC.

This command is used to retrieve user name information that was set using the set user name command.
Configuration software can use this command to retrieve user names.

Table 40: Get user name command request and response data

Request data
byte number

Data field

1 User ID

• [7:6] — Reserved
• [5:0] — User ID. 000000b = reserved.

Response
data byte
number

Data field

1 Completion code.

2:17 User name string in ASCII, 16 bytes, max. Strings with fewer than 16 characters are
terminated with null (00h) characters filling in the remaining bytes. MC does not check to
see whether string data is printable or not. Only character that MC interprets is null (00h).

Set user password command
This command is available to the MC.

Get user name command 83



This command is used to set and change user passwords and to enable and disable user IDs. If no password
protection is desired for a given user, the password must be stored as an ASCII null-string. The management
controller firmware forces the remaining fifteen bytes to 00h and stores the password as sixteen bytes of 00h.

The password is stored as a 16-byte or 20-byte (for IPMI v2.0/RMCP+) octet string. All values (0-255) are
allowed for every byte. The management controller does not check the format or interpret values that are
passed in with this command.

Software is allowed to place additional restrictions on what passwords can be entered, in which case it is the
responsibility of configuration software and console software to stay in synch with that definition. For example,
remote console software could restrict passwords to the printable ASCII character set in order to simplify
direct keyboard entry. If this is done, any companion configuration utility should ensure that the user does not
configure the managed system with non-printable passwords. Otherwise, it would be possible for the
management controller to be configured with passwords that could not be entered via the remote console
utility.

Table 41: Set user password command request and response data

Request data
byte number

Data field

1 User ID

For IPMI v2.0, the MC supports 20-byte passwords for all supported user IDs that have
configurable passwords. The MC maintains an internal tag that indicates whether the
password was set as a 16-byte or as a 20-byte password.

A 16-byte password can be used in algorithms that call for a 20-byte password. In this
case, the 16-byte password is padded with 0’s to 20- bytes.

The test password operation returns the test failed error completion code if an attempt is
made to test a password that was stored as a 20-byte password as a 16-byte password
(per password size bit 7), and vice versa. The test password operation can be used to
determine whether a password has been stored as 16-bytes or 20-bytes.

A password that has been stored as a 20-byte password cannot be used for establishing
an IPMI v1.5 session. If it is necessary to configure the same password for both IPMI v2.0
and IPMI v1.5 access, it must be set as a 16-byte password.1The password is padded with
0’s as necessary for IPMI v2.0 / RMCP+ use.

[7] Password size

1b = Set 20-byte user password/key.

0b = Set 16-byte user password/key (IPMI v1.5 backward compatible).

[6] Reserved

[5:0] User ID. 000000b = reserved. (User ID 1 is permanently associated with User 1,
the null user name).

2 [7:2] Reserved

[1:0] Operation

00b = Disable user

Table Continued

84 Command specification



01b = Enable user

10b = Set password

11b = Test password. Compares the password data given in the request
with the presently stored password and returns an OK completion
code if there is a match. Otherwise, an error completion code is
returned. (See the completion code description in the response
data.)

For password size = 16 bytes:

3:18 Password data. This is a required, fixed length field when used for the set and test
password operations. If the password is entered as an ASCII string, it must be null (00h)
terminated and 00h padded if the string is shorter than 16 bytes. This field is not needed if
the operation is disable user or enable user. If this field is present for those operations, the
MC ignores the data.

For password size = 20 bytes:

3:22 Password data. This is a required, fixed length field when used for the set- and test
password operations. If the password is entered as an ASCII string, it must be null (00h)
terminated and 00h padded if the string is shorter than 20 bytes. This field is not needed if
the operation is disable user or enable user. If this field is present for those operations, the
MC ignores the data.

Response
data byte
number

Data field

1 Completion code. Generic, plus the command-specific completion codes:

80h = Mandatory. Password test failed. Password size is correct, but the password data
does not match the stored value.

81h = Mandatory. Password test failed. Wrong password size was used.

1 The same user name can be used with different passwords on different channels. The MC scans user
names until it finds the first one that is enabled for a particular channel. Thus, it is possible for a MC
implementation to be configured to allow a 20-byte password on one channel, and a 16-byte password on
another channel for the same user name. This requires multiple user entries.

RMCP+ support and payload commands
This sections list the commands associated with discovering, enabling, and activating payloads under IPMI
v2.0/RMCP+ as well as updates and additions to IPMI commands to support IPMI v2.0/RMCP+ sessions,
authentication, and configuration.

RMCP+ support and payload commands 85



NOTE:

The following commands remain available for payloads if IPMI messaging payload type is disabled:

• Deactivate payload
• Suspend/resume payload encryption (as defined for given payload)
• Get payload activation status
• Get channel payload version command
• Set session privilege level
• Close session

The following table defines the payload type numbers and ranges for Payload Type Handles.

Table 42: Payload type numbers

Number Type Major format version Minor format version

Standard Payload Types

0h IPMI Message 1h 0h

1h SOL (serial over LAN) 1h 0h

Session Setup Payload Types

10h RMCP+ Open Session Request 1h 0h

11h RMCP+ Open Session Response 1h 0h

12h RAKP Message 1 1h 0h

13h RAKP Message 2 1h 0h

14h RAKP Message 3 1h 0h

15h RAKP Message 4 1h 0h

Activate payload command
This command is available to the MC.

This command is used for activating and deactivating a payload type under a given IPMI session. The ability
to execute this command is determined via the user’s privileges as assigned via the set user payload
access command.

The activate payload command may return a port number that is separate from the port number for the
session that the command was issued under. In this case, the remote console must establish a session on the
port number that the activate session command returned. The remote console must then issue the
activate payload command on that port number in order to actually activate the payload. It is possible
that the remote console already had a session active on the given port number. If the privileges associated
with that session are sufficient (this is typically the case unless the remote console activated the session at a
privilege level that was lower than the maximum level for the user) the remote console can re-use the existing
session and just use the activate payload command to activate the new payload type.

BMCs may have limited resources for handling multiple sessions. It is highly recommended that a remote
console avoids creating multiple sessions and shares sessions for multiple payloads whenever possible.

86  Activate payload command



The activate payload command is only accepted over a channel on which payloads can be activated.
For example, the activate payload command cannot be executed from the IPMB.

Table 43: Activate payload command request and response data

Request data
byte number

Data field

1 • [7:6] — Reserved
• [5:0] — Payload type. IPMI message payloads do not need to be explicitly activated. A

payload that is required to be launched over a different port than that used to establish
the initial IPMI session is only required to support the IPMI commands needed by the
particular payload type.

2 Payload instance

• [7:4] — Reserved
• [3:0] — Payload instance. 1-based. 0h = reserved.

3:6 Auxiliary request data. Additional payload-specific parameters to configure behavior of the
payload when it becomes activated. Ignored if no auxiliary data is specified for a given
payload type.

Table Continued

Command specification 87



For payload type = SOL:

• Byte 1

◦ [7] — Encryption activation. The encryption algorithms specified in this document
must be used with authentication. The MC returns an error completion code if an
attempt is made to activate encryption without also activating authentication.

– 1b: Activate payload with encryption. All SOL payload data from the MC is
encrypted, if encryption was negotiated at the time of session activation.

– 0b: Activate payload without encryption. MC sends all SOL payload data
unencrypted, if that option is allowed. (An SOL configuration parameter allows a
system to be configured to require encryption for all SOL transfers).

◦ [6] — Authentication activation.

– 1b: Activate payload with authentication. All SOL payload data from the MC is
authenticated, if authentication was negotiated at the time of session activation

– 0b: Activate payload without authentication. MC sends all SOL payload data
unauthenticated, if that option is allowed. (An SOL configuration parameter allows
a system to be configured to require authentication for all SOL transfers).

◦ [5] — Test mode (optional). Enables DCD and DSR to be manually controlled by the
remote console and the reporting of RTS and DTR state via the SOL operation/
status byte. This can be used to facilitate software testing of the 16550 UART
interface.

– 1b = Activate test mode. If test mode is not supported, bit [0] of the auxiliary
response data will be returned as 0b.

– 0b = Deactivate test mode.
◦ [4] — Reserved
◦ [3:2] — Shared serial alert behavior. The following settings determine what happens

to serial alerts if IPMI over serial and SOL are sharing the same baseboard serial
controller.

– 11b: Reserved
– 10b: Serial/modem alerts succeed while SOL active.
– 01b: Serial/modem alerts deferred while SOL active.
– 00b: Serial/modem alerts fail while SOL active.

◦ [1] — SOL startup handshake

– 0b: MC asserts CTS and DCD/DSR to baseboard upon activation.
– 1b: CTS and DCD/DSR remain deasserted after activation. Remote console must

send an SOL payload packet with control field settings to assert CTS and DCD/
DSR. (This enables the remote console to first alter volatile configuration settings
before hardware handshake is released).

◦ [0] — Reserved
• Byte 2:4 — Reserved, write a 00h

Response
data byte
number

Data field

Table Continued

88 Command specification



1 Completion code. Generic plus the command-specific completion codes: (An error
completion code should be returned if the payload type in the request is set to IPMI
Message ( 0h ) ).

• 80h: Payload already active on another session (required). This will be returned any
time an attempt is made to activate a payload type when that type is already activated
for another session, and when the MC only supports one instance of that payload type
running at a time.

• 81h: Payload type is disabled (optional). Given payload type is not configured to be
enabled for activation.

• 82h: Payload activation limit reached. Cannot activate given payload type because the
maximum number of simultaneous instances of that payload type are already running.

• 83h: Cannot activate payload with encryption.
• 84h: Cannot activate payload without encryption. MC requires encryption for all

payloads for given privilege level.

2:5 Auxiliary response data. LS-byte first. For payload = SOL:

• [31:1] — Reserved. Return as 0’s (zeroes).
• [0]

◦ 0b = Test mode not supported / enabled.
◦ 1b = Test mode enabled.

6:7 Inbound payload size. Maximum size of payload data field from remote console to MC.
Excludes size of confidentiality header and trailer fields, if any. 1-based.

8:9 Outbound payload size. Maximum size of payload data field from MC to remote console.
Excludes size of confidentiality header and trailer fields, if any. 1-based.

10:11 Payload UDP port number. UDP port number through which the payload can be
transferred. If the port number is the same as the port that was used to establish the IPMI
session, then SOL payload transfers are now available under that IPMI session on that
port. Otherwise, the remote console needs to establish a separate IPMI session to the
specified port number using the same IP address, username and password/key information
that was used to establish the IPMI session. SOL payload transfers are then available over
that session.

If the remote console already has an IPMI session established on that port for a different
payload type, the SOL payload type is also available over that session - provided that the
session was established at a privilege level that matches the privilege level and
authentication required for SOL. Otherwise, the remote console needs to close that session
and reestablish it at the necessary privilege level.

12:13 Payload VLAN number - FFFFh if VLAN addressing is not used.

Deactivate payload command
This command is available to the MC.

This command is used to terminate use of a given payload on an IPMI session. This type of traffic then
becomes freed for activation by another session, or for possible re-activation under the present session. The
deactivate payload command does not cause the session to be terminated. The close session
command should be used for that purpose. A remote console application does not need to explicitly
deactivate payload(s) before terminating a session. When a session terminates, all payloads that were active
under that session are automatically deactivated by the MC.

Deactivate payload command 89



Table 44: Deactivate payload command request and response data

Request data
byte number

Data field

1 • [7:6] — Reserved
• [5:0] — Payload type.

2 Payload instance

• [7:4] — Reserved
• [3:0] — Payload instance. 1-based. 0h = reserved.

3:6 Payload auxiliary data. Additional parameters to configure behavior of the payload when it
becomes deactivated. Ignored if no auxiliary data is specified for given payload type.

For payload type = SOL, (no auxiliary data) write as 0000_0000h:

Response
data byte
number

Data field

1 Completion code. Generic plus the command-specific completion codes: (An error
completion code should be returned if the payload type in the request is set to “IPMI
Message” ( 0h ) ).

• 80h: Payload already deactivated.
• 81h: Payload type is disabled (optional). Given payload type is not configured to be

enabled for activation.

Suspend/resume payload encryption command
This command enables a remote console to control whether payload data from the MC is sent encrypted or
not. Since encryption can be a significant burden on software, this command provides a mechanism to allow
higher performance by operating without encryption and only activating encryption when it is required for data
confidentiality. The command can also trigger a regeneration of the encryption Initialization Vector and re-
initialization of the encryption state machine for algorithms such as xRC4 that use the same initialization
vector for multiple packets.

The extent at which this command can control encryption of data from the MC is dependent on the payload
definition. Some payload definitions may use a mix of encrypted and unencrypted payload data transfers. For
example, a payload may implement a ‘request/response’ protocol, where the MC would return an encrypted
or unencrypted response based on whether the request from the remote console was encrypted or
unencrypted. In this case, the command may only affect data that is autonomously generated by the MC.
Other payload definitions may just use whatever encryption the session was activated with, and offer no ‘run-
time’ control of encryption/decryption, while other payload definitions may be ‘stream based’ where it is
desirable for the remote console to be able to select when payload data is from the MC is encrypted or not.

The Suspend/Resume Payload Encryption command is only accepted from the channel that the payload was
activated on.

90  Suspend/resume payload encryption command



Table 45: Payload-specific encryption behavior

Payload Type = IPMI Messaging

• Encrypted requests from the remote console will get encrypted responses from the MC.
• The Suspend/Resume Payload Encryption command controls whether asynchronous (unrequested)

messages from the MC are encrypted or not.
• PET Traps (which are actually separate from IPMI Messaging) are always sent unencrypted.

Payload Type = SOL

• The SOL configuration parameters allow configuring the system to require that SOL data be encrypted.
• The MC will transmit SOL payload data according to encryption settings that were selected when the

payload was activated unless over-ridden by SOL configuration parameters.
• The Suspend/Resume Payload Encryption command controls whether SOL Payload data is encrypted or

not.

Table 46: Suspend/resume payload command request and response data

IPMI
request
data byte
number

Data field

1 [7:6] - reserved

[5:0] - payload type (See Table 13-16, Payload Type Numbers)

2 Payload Instance

[7:4] - reserved

[3:0] - payload instance. 1-based. 0h = reserved.

3 [7:2] - reserved

[4:0] - Operation

• 2h = Regenerate initialization vector. For xRC4 encryption, this causes the MC to
reinitialize the xRC4 state machine, reset the data offset, and deliver a new Initialization
Vector value in the next encrypted packet it sends to the remote console. Because of
processing delays and potential tasks in progress, the remote console may receive
additional packets from the MC that are encrypted using the prior Initialization Vector
before getting packets that use the new IV.

• 1h = Resume/Start encryption on all transfers of specified payload data from the MC.
• 0h = Suspend encryption on all transfers of specified payload messages from the MC.

Table Continued

Command specification 91



IPMI
response
data byte
number

Data field

1 Completion Code

Generic plus the following command-specific completion codes:

• 80h: Operation not supported for given payload type.
• 81h: Operation not allowed under present configuration for given payload type.
• 82h: Encryption is not available for session that payload type is active under.
• 83h: The payload instance is not presently active.

Set channel security keys command
The Set Channel Security Keys command provides a standardized interface for initializing system unique
keys that are used for the pseudo-random number generator key (KR) and the key-generation key (KG) used
for RMCP+. Implementing the ability to set Kr is optional. The command is provided mainly to offer a common
interface for BMCs that are not pre-configured with a KR values, or which may need their KR values to be
restored if they are lost due to a data corruption or firmware update.

The command includes a mechanism that allows specified keys to be “locked”. Once locked, the key value
cannot be read back or rewritten via standard IPMI commands. It is possible, however, that a firmware update
or re- installation procedure may cause the keys to be cleared or unlocked. Software utilities responsible for
MC initial installation and setup should check to see whether keys have been locked and if not, should
initialize them appropriately and lock them.

If this command is not supported, it indicates that the keys are either permanently pre-configured, or that they
are only configurable via an OEM/MC-specific mechanism.

Request data
byte number

Data field

1 Channel Number

[7:4] - reserved

[3:0] - Channel Number

NOTE:

This command only applies to channels that support RMCP+, if the channel does
not support RMCP+ the command will return an error completion code.

Table Continued

92  Set channel security keys command



2 Operation

[7:2] - reserved

[1:0] - Operation

• 00b = read key

MC returns value of specified key, provided key has not yet been locked. Some BMCs
may allow the key to be re-written if it does not match the expected value. Other
BMCs may only allow one ‘set’ operation. If the key value has not yet been initialized,
the MC will return 0’s for the key value. Utility software responsible for MC installation
and initial setup can use this operation to also check to see whether keys have been
initialized and locked.

• 01b = set key

MC writes given key value to non-volatile storage.
• 10b = lock key

MC locks out modification or reading the key value. Once a key has been locked, it is
not cannot be rewritten or read via IPMI specified commands.

• 11b = reserved

3 Key ID

[7:0] - key ID.

• 00h = RMCP+ “KR” key (20 bytes). The “KR” key is used as a unique value for
random number generation. Note: A MC implementation is allowed to share a single
KR value across all channels. A utility can set KR and lock it for one channel, and
then verify it has been set and locked for any other channels by using this command
to read the key from other channels and checking the ‘lock status’ field for each
channel to see if it matches and is locked.

• 01h = RMCP+ “KG” key (20 bytes). “KG” key acts as a value that is used for key
exchange for the overall channel. This key is cannot be locked, to ensure a
password/key configuration utility can set its value. This value is used in conjunction
with the user key values (passwords) in RAKP-HMAC- SHA1 and RAKP-HMAC-MD5
authentication. I.e. the remote console needs to have a-priori knowledge of both this
key value and the user password setting, in order to establish a session. KG must be
individually settable on each channel that supports RMCP+.

• All other = reserved

(4:M) Key value. Value for specified key. Used for “set” Operation only. Otherwise, this field is
not used in the request. The MC will ignore any bytes following the ‘Key ID’ byte.

Response data
byte number

Data field

1 Completion Code. Generic, plus following command-specific completion codes:

• 80h = Cannot perform set / confirm. Key is locked (mandatory)
• 81h = insufficient key bytes
• 82h = too many key bytes
• 83h = key value does not meet criteria for specified type of key
• 84h = KR is not used. MC uses a random number generation approach that does not

require a KR value.

Table Continued

Command specification 93



2 7:2 - reserved.

1:0 - lock status

• 00b = key is not lockable.
• 01b = key is locked.
• 10b = key is unlocked.
• 11b = reserved

(3:N) Key value.

The MC returns the specified key value when the Operation is set to “read key”.
Otherwise, the MC returns no additional bytes past the completion code.

Get system interface capabilities command
This command can be used to determine whether the SSIF supports multi-part transactions, and what size of
IPMI messages can be transferred. The Get System Interface Capabilities command is mandatory for BMCs
that implement multi-part writes or reads. Thus, software can assume that if the Get System Interface
Capabilities command is not implemented, the interface only supports single-part writes and reads.

Request
data byte
number

Data field

1 System Interface Type

[7:4] - reserved

[3:0] - System Interface Type (For BT use the Get BT Interface Capabilities command)

• 0h = SSIF
• 1h = KCS
• 2h = SMIC
• all other = reserved

Response
data byte
number

Data field

1 Completion Code

2 Reserved. Returned as 00h.

For System Interface Type = SSIF:

Table Continued

94  Get system interface capabilities command



3 [7:6] - Transaction support

• 00b = only single-part reads/writes supported.
• 01b = multi-part reads/writes supported. Start and End transactions only.
• 10b = multi-part reads/writes supported. Start, Middle, and End transactions supported.
• 11b = reserved.

[5:4] - reserved.

[3] - PEC support.

• 1b = implements PEC. MC will start using PEC in read transactions after it receives any
SSIF write transaction that includes a valid PEC. The MC ceases using PEC if it receives
an SSIF write transaction that does not include PEC.

• 0b = does not support PEC. Note that a MC implementation may reject write transactions
that include a PEC byte.

[2:0] - SSIF Version

• 000b = version 1 (version defined in this specification).

4 Input message size in bytes. (1 based.)

Number of bytes of IPMI message data that the MC can accept. This number does not include
slave address, SMBus length , PEC, or SMBus CMD bytes, just the IPMI message data. A
MC that just supports single-part writes would return 32 (20h) for this value. A MC that
supports multi-part Start and End would return a value from 33 to 64. A MC that supports
multi-part with Middle transactions would return a value from 65 to 255.

5 Output message size in bytes. (1 based.)

Maximum number of bytes of IPMI message data that can be read from the MC. This number
does not include slave address, SMBus length, PEC, SMBus CMD bytes, special bytes (such
as the special bytes following the length byte in the multi -part read middle and end
transactions) just the IPMI message data. A MC that just supports single-part reads would
return 20h (32) for this value. A MC that supports multi-part Start and End would return a
value from 33 to 62 (the reason this is 62 instead of 64 is that there are two special bytes after
the length byte.) A MC that supports multi-part with Middle transactions would return a value
from 63 to 255.

For System Interface Type = KCS or SMIC

3 [7:3] - reserved

[2:0] - System Interface Version

• 000b = version 1 (conformant with KCS or SMIC interface as defined in this specification).

4 Input maximum message size in bytes. (1 based.)

Largest number of bytes that can be transferred in a KCS FFh means 255 or more.

Get payload activation status command
This command is available to the MC.

This command returns how many instances of a given payload type are presently activated, and how many
total instances can be activated.

Get payload activation status command 95



Table 47: Get payload activation status command request and response data

Request data
byte number

Data field

1 Payload type number - number of the standard payload type or OEM payload handle from
which to retrieve status.

Response
data byte
number

Data field

1 Completion code

2 Instance capacity

[7:4] Reserved.

[3:0] Number of instances of a given payload type that can be simultaneously
activated on MC. 1-based. 0h = reserved.

3 [7] 1b = Instance 8 is activated.

0b = Instance 8 is deactivated.

[6] 1b = Instance 7 is activated.

0b = Instance 7 is deactivated.

...

[0] 1b = Instance 1 is activated.

0b = Instance 1 is deactivated.

4 [7] 1b = Instance 16 is activated.

0b = Instance 16 is deactivated.

[6] 1b = Instance 15 is activated.

0b = Instance 15 is deactivated.

...

[0] 1b = Instance 9 is activated.

0b = Instance 9 is deactivated.

Get payload instance info command
This command is available to the MC.

This command returns information about a specific instance of a payload type. It is primarily used by software
that may want to negotiate with an application that is presently using the given payload type. It accomplishes

96  Get payload instance info command



this by using the session ID returned from this command with the get session info command to look up
the addressing information for the party that activated the payload. The application may then use that
information to establish a direct dialog with the application that presently owns the payload (this inter-
application communication is not defined in the IPMI specifications).

Table 48: Get payload instance info command request and response data

Request data
byte number

Data field

1 Payload type number - number of the standard payload type or OEM payload handle
from which to retrieve status.

2 Payload instance. 1-based. 0h = reserved.

Response data
byte number

Data field

1 Completion code. An error completion code should be returned if the payload type in the
request is set to IPMI message ( 0h ) .

2:5 Session ID - ID of session on which the instance is presently activated. (The managed
system session ID that the MC generated when the session was activated).
00_00_00_00h if the given instance is not activated. Remote software can use this
information with the

get session info
command to identify the remote console that presently is using a given payload type.

6:13 Payload-specific information (8-bytes)

For payload type = SOL:

• Byte 1: Port number, a number representing the system serial port that is being
redirected. 1-based. 0h = unspecified. Used when more than one port can be
redirected on a system.

• Byte 2: 8 = reserved.

Set user payload access command
This command is available to the MC.

This command controls whether the specified user has the ability to activate the specified payload type on the
given channel. The command uses bitfields to allow a configuration utility to use a single command to set
enable/disable multiple payloads at a time. Standard payloads are set separately from OEM payload enables.
The command would be issued at least once with standard payloads selected to set the configuration for
standard payloads, and then at least once with OEM payloads selected to set the configuration for OEM
payloads.

Set user payload access command 97



Table 49: Set user payload access command request and response data

Request data
byte number

Data field

1 Channel number

• [7:4] — Reserved
• [3:0] — Channel number

2 [7:6] - Operation

• 00b = Enable. Writing a “1b” to enable/disable bit enables the corresponding payload.
Writing “0b” to bit causes no change to enabled/disabled state.

• 01b = Disable. Writing a “1b” to bit disables the corresponding payload. Writing ”0b” to
bit causes no change to enabled/disabled state.

• 10b, 11b = Reserved

[5:0] — User ID. 000000b = reserved.

3 Standard payload enables 1

• [7:2] — Reserved for standard payloads 2-7 enable/disable bits.
• [1] — Standard payload 1 (SOL) enable/disable
• [0] — Reserved. IPMI messaging is enabled/disabled for users via the

set user access
command.

4 Standard payload enables 2 - reserved

5 OEM payload enables 1

• [7] - OEM payload 7 enable/disable
• [6] - OEM payload 6 enable/disable
• [5] - OEM payload 5 enable/disable
• [4] - OEM payload 4 enable/disable
• [3] - OEM payload 3 enable/disable
• [2] - OEM payload 2 enable/disable
• [1] - OEM payload 1 enable/disable
• [0] - OEM payload 0 enable/disable

6 OEM payload enables 2 - reserved

Response data
byte number

Data field

1 Completion code. An implementation will not return an error completion code if the user
access level is set higher than the privilege limit for a given channel. If it is desired to
bring attention to this condition, it is up to software to check the channel privilege limits
set using the

set channel access
command and provide notification of any mismatch.

98 Command specification



Get user payload access command
This command is available to the MC.

The get user payload access command returns the user payload enable settings that were set using
the set user payload access command.

Table 50: Get user payload access command request and response data

Request data
byte number

Data field

1 Channel number

• [7:4] — Reserved
• [3:0] — Channel number

2 User ID

• [7:6] — Reserved
• [5:0] - User ID. 000000b = reserved

Response data
byte number

Data field

1 Completion code

2 Standard payload enables 1

• [7:2] — Reserved for standard payloads 2-7 enabled/disabled state.
• [1]

◦ 1b = Standard payload 1 enabled (SOL)
◦ 0b = Standard payload 1 disabled

• [0] — Reserved.

3 Standard payload enables 2 - reserved

4 OEM payload enables 1. For each bit: 1b = payload enabled, 0b = payload disabled.

• [7] - OEM payload 7 enabled/disabled
• [6] - OEM payload 6 enabled/disabled
• [5] - OEM payload 5 enabled/disabled
• [4] - OEM payload 4 enabled/disabled
• [3] - OEM payload 3 enabled/disabled
• [2] - OEM payload 2 enabled/disabled
• [1] - OEM payload 1 enabled/disabled
• [0] - OEM payload 0 enabled/disabled

5 OEM payload enables 2 - reserved

Get channel payload support command
This command is available to the MC.

This command enables local and remote console software to determine what payloads are enabled on the
given MC. The command returns a bitfield indicating which payload type numbers can be activated on the
given channel.

Get user payload access command 99



Table 51: Get channel payload support command request and response data

Request data
byte number

Data field

1 Channel number

• [7:4] — Reserved
• [3:0] — Channel number

Response data
byte number

Data field

1 Completion code

2 • [7] = Standard payload type #7 supported
• ...
• [0] = Standard payload type #0 supported

3 • [7] = Standard payload type #15 (0Fh) supported
• ...
• [0] = Standard payload type #8 supported

4 • [7] = Session setup payload type #7 supported
• ...
• [0] = Session setup payload type #0 supported

5 • [7] = Session setup payload type #15 (0Fh) supported
• ...
• [0] = Session setup payload type #8 supported

6 • [7] = Payload type 27h (OEM7) used
• ...
• [0] = Payload type 20h (OEM0) used

7 • [7] = Payload type 2Fh (OEM15) used
• ...
• [0] = Payload type 28h (OEM8) used

8:9 Reserved. Return as 0000h

Get channel payload version command
This command is available to the MC.

This command returns version information for the given payload type. The version number has major and
minor parts. The major part of the version should only increment when there are significant changes to the
payload format, commands, or payload-specific protocols that break backward compatibility with earlier
versions. The minor part of the version increments when there are extensions to the payload format that are
significant but are backwards compatible with earlier versions under the same major version number. An
example of a major change would be a change to the payload activation process that would prevent earlier
applications from activating the given payload type. An example of a minor format version change would be
the definition of commands for new functions that did not exist under the previous format, but if unused, do
not interfere with the operation of older applications.

100  Get channel payload version command



Table 52: Get channel payload version command request and response data

Request data
byte number

Data field

1 Channel number

• [7:4] — Reserved
• [3:0] — Channel number

2 Payload type number/payload type handle - number of the standard payload type or OEM
payload handle for which to retrieve status. See RMCP+ support and payload
commands.

.

Response data
byte number

Data field

1 Completion code. Generic plus command-specific completion code: 80h — Payload type
not available on given channel.

2 Format version

• [7:4] - Major format version. BCD encoded (0 to 9).
• [3:0] - Minor format version. BCD encoded (0 to 9). Software should present version

data to the user in the format “major.minor”. For example, 10h —>1.0.

The format version for the SOL payload implemented per this specification is 1.0 (10h).

IPMI LAN Device Commands
This section defines the configuration and control commands that are specific to LAN channels. None of the
commands in the following table are required unless a LAN channel is implemented. See Command
Assignments for the specification of the Network Function and Command (CMD) values and privilege levels
for these commands.

Set LAN configuration parameters command
This command is used for setting parameters such as the network addressing information required fro IPMI
LAN-operation.

Table 53: Set LAN configuration parameters command request and response data

Request data
byte number

Data field

1 Channel number

• [7:4] — Reserved
• [3:0] — Channel number

2 Parameter selector

3:N Configuration parameter data, per the table.

Table Continued

IPMI LAN Device Commands 101



Response data
byte number

Data field

1 Completion code.

• 80h = parameter not supported.
• 81h = attempt to set the ‘set in progress’ value (in parameter #0) when not in the ‘set

complete’ state. (This completion code provides a way to recognize that another party
has already ‘claimed’ the parameters.)

• 82h = attempt to write read-only parameter.
• 83h = attempt to read write-only parameter.

Get LAN configuration parameters command
This command is used for retrieving the configuration parameters from the set LAN configuration
parameters command.

Table 54: Get LAN configuration parameters command request and response data

Request data byte
number

Data field

1 [7]

• 0b = Get parameter
• 1b = Get parameter revision only

[6:4] - Reserved

[3:0] - Channel number

2 Parameter selector

3 Set Selector. Selects a given set of parameters under a given Parameter selector value. 00h
if parameter doesn’t use a Set Selector.

4 Block Selector (00h if parameter does not require a block number)

Response data
byte number

Data field

1 Completion Code.

Generic codes, plus following command-specific completion code(s):

80h = parameter not supported.

2 [7:0] - Parameter revision.

Format: MSN = Present revision. LSN = Oldest revision with which the parameter is
backward compatible. 11h for parameters in this specification.

Table Continued

102  Get LAN configuration parameters command



The following data bytes are not returned when the ‘get parameter revision only’ bit is 1b.

3:N Configuration parameter data, per the following LAN configuration parameters table. If the
rollback feature is implemented, the MC makes a copy of the existing parameters when the
‘set in progress’ state becomes asserted (See the Set In Progress parameter #0). While the
‘set in progress’ state is active, the MC will return data from this copy of the parameters, plus
any uncommitted changes that were made to the data. Otherwise, the MC returns parameter
data from non-volatile storage.

Command specification 103



Table 55: LAN configuration parameters

Parameter # Parameter Data (non-volatile unless otherwise noted)

Set In Progress

(volatile)

0 data 1 - This parameter is used to indicate when any of the following
parameters are being updated, and when the updates are completed. The bit
is primarily provided to alert software than some other software or utility is in
the process of making changes to the data. An implementation can also elect
to provide a ‘rollback’ feature that uses this information to decide whether to
‘roll back’ to the previous configuration information, or to accept the
configuration change.

If used, the roll back shall restore all parameters to their previous state.
Otherwise, the change shall take effect when the write occurs.

[7:2] - reserved

[1:0] -

• 00b = set complete. If a system reset or transition to powered down state
occurs while ‘set in progress’ is active, the MC will go to the ‘set complete’
state. If rollback is implemented, going directly to ‘set complete’ without
first doing a ‘commit write’ will cause any pending write data to be
discarded.

• 01b = set in progress. This flag indicates that some utility or other
software is presently doing writes to parameter data. It is a notification flag
only, it is not a resource lock. The BMC does not provide any interlock
mechanism that would prevent other software from writing parameter data
while.

• 10b = commit write (optional). This is only used if a rollback is
implemented. The BMC will save the data that has been written since the
last time the ‘set in progress’ and then go to the ‘set in progress’ state. An
error completion code will be returned if this option is not supported.

• 11b = reserved

iLO Notes:

• iLO does not support the Commit Write or Rollback features.
• iLO will not reset upon transition to Set Complete. If a change was made

that requires an iLO reset, the reset must be invoked by a separate
command sequence. For more information, (see status in parameter 224)

• Using this parameter as a configuration semaphore or interlock is only
valid for the IPMI interface. It is not integrated with other iLO User
Interfaces (UIs) which can also change network configuration. To
guarantee that no iLO UI modified network configuration during a certain
time frame, the configuration status counters defined in parameter 224
below can be used.

Authentication Type

Support (Read Only)

1 This ‘read only’ field returns which possible Authentication Types (algorithms)
can be enabled for the given channel. The following Authentication Type
Enables parameter selects which Authentication Types are available when
activating a session for a particular maximum privilege level.

[7:6] -Reserved

[5:0] -Authentication type(s) enabled for this channel (bitfield): All bits:

Table Continued

104 Command specification



Parameter # Parameter Data (non-volatile unless otherwise noted)

• 1b = Supported
• 0b = Authentication type not available for use.

[5] - OEM proprietary (per OEM identified by the IANA OEM ID in the RMCP
Ping Response)

[4] - Straight password / key

[3] - Reserved

[2] - MD5

[1] - MD2

[0] - none

iLO Notes:

• iLO reports not available for use, all types.

Table Continued

Command specification 105



Parameter # Parameter Data (non-volatile unless otherwise noted)

Authentication Type

Enables

2 This field is used to configure which Authentication Types are available for
use when a remote console activates an IPMI messaging connection to the
MC for a given requested maximum privilege level. Once the session has
been activated, the accepted authentication type will be the only one used for
authenticated packets, regardless of the present operating privilege level, or
the privilege level associated with the command.

Depending on configuration of per-message and user-level authentication
disables, unauthenticated packets (authentication type = none) may also be
accepted. The BMC makes no attempt to check or ensure that stricter
authentication types are associated with higher requested maximum privilege
levels. For example, it is possible to configure the BMC so activating a
session with a maximum privilege level of ‘User’ requires MD5 while ‘Admin’
requires ‘none’.

NOTE:

An implementation that has fixed privilege and authentication type
assignments, in which case this parameter can be implemented as
Read Only. It is recommended that an implementation that implements
a subset of the possible authentication types returns a CCh error
completion code if an attempt is made to select an unsupported
authentication type.

• byte 1:

Authentication Types returned for maximum requested privilege =
Callback level.

◦ [7:6] -Reserved
◦ [5:0] -Authentication type(s) enabled for this channel (bitfield):
◦ All bits:

– 1b = Authentication type enabled for use at given privilege level
– 0b = Authentication type not available for use at given privilege

level.
◦ [5] - OEM proprietary (per OEM identified by the IANA OEM ID in the

RMCP Ping Response)
◦ [4] - straight password / key
◦ [3] - reserved
◦ [2] - MD5
◦ [1] - MD2
◦ [0] - none

• byte 2:

Authentication Type(s) for maximum privilege = User level

(format follows byte 1)
• byte 3:

Authentication Type (s) for maximum privilege = Operator level

(format follows byte 1)
• byte 4:

Table Continued

106 Command specification



Parameter # Parameter Data (non-volatile unless otherwise noted)

Authentication Type (s) for maximum privilege = Administrator level

(format follows byte 1)
• byte 5:

Authentication Type (s) for maximum privilege = OEM level

(format follows byte 1)

iLO Notes:

• iLO responds with all 0s on read.
• iLO treats this parameter as read-only.

IP Address 3 data 1:4 - IP Address

MS-byte first.

iLO Notes:

• If iLO is configured for DHCPv4 address assignment when this parameter
is read, it reports the address currently assigned by the DHCPv4 server.

• If iLO is configured for DHCPv4 address assignment when this parameter
is written, iLO will be automatically transitioned to static address
assignment. Be sure to also configure iLO Subnet Mask (parameter 6)
and iLO Default Gateway Address (parameter 12) if desired before setting
iLO in this case.

• Requires iLO reset after write to take effect.

IP Address Source 4 data 1

[7:4] -Reserved

[3:0] -Address source

• 0h = Unspecified
• 1h = Static address (manually configured)
• 2h =Address obtained by MC running DHCP
• 3h = Address loaded by BIOS or system software
• 4h = Address obtained by MC running other address assignment protocol

iLO Notes:

• iLO supports only sources 1h and 2h.
• Transitioning iLO from DHCP to static will cause the currently assigned

DHCPv4 address if any, to be set as a static address. This address may
be then modified if desired by setting parameter 3 IP Address before
resetting iLO.

• Caution: If no DHCPv4 address has been assigned at the time iLO is
transitioned from DHCP to static, iLO static address will be 0.0.0.0. If no
static address is subsequently assigned using parameter 3 before iLO
reset, iLO will be unreachable via IPv4 after reset.

• Requires iLO reset after write to take effect.

Table Continued

Command specification 107



Parameter # Parameter Data (non-volatile unless otherwise noted)

MAC Address

(can be Read Only)

5 data 1:6 - MAC Address for messages transmitted from MC.

MS-byte first. An implementation can either allow this parameter to be
settable, or it can be implemented as Read Only.

iLO Notes:

• This parameter is read-only on iLO.

Subnet Mask 6 data 1:4 - Subnet Mask. MS-byte first.

iLO Notes:

• iLO supports only CIDR subnet masks. For example, contiguous prefix
bits only.

• If iLO is configured for DHCPv4 address assignment when this parameter
is read, it reports the subnet mask currently assigned by the DHCPv4
server.

• If iLO is configured for DHCPv4 address assignment when this parameter
is written, iLO will automatically be transitioned to static address
assignment. Be sure to also configure iLO Static IP Address (parameter
3,) and iLO Default Gateway Address (parameter 12) if desired before
resetting iLO in this case.

• Requires iLO reset after write to take effect.

BMC-generated ARP
control (optional)

10 data 1

— BMC-generated ARP control.

Note: the individual capabilities for BMC-generated ARP responses and
BMC-generated Gratuitous ARPs are individually optional. The BMC should
return an error completion code if an attempt is made to enable an
unsupported capability.

• [7:2] — Reserved

◦ [1]

– 1b = enable BMC-generated ARP responses
– 0b = disable BMC-generated ARP responses

◦ [0]

– 1b = enable BMC-generated Gratuitous ARPs
– 0b = disable BMC-generated Gratuitous ARPs

iLO Notes:

• Only supported as read-only. Always responds BMC-generated ARP
enabled, and Gratuitous ARPs disabled.

Table Continued

108 Command specification



Parameter # Parameter Data (non-volatile unless otherwise noted)

Default Gateway

Address

12 data 1:4 - IP Address

MS-byte first. This is the address of the gateway (router) used when the BMC
sends a message or alert to a party on a different subnet than the one
theBMC is on.

iLO Notes:

• If iLO is configured for DHCPv4 gateway address assignment when this
parameter is read, it reports the address currently assigned by the
DHCPv4 server.

• If iLO is configured for DHCPv4 gateway address assignment when this
parameter is written, it will be transitioned to static

gateway address

assignment.
• It is possible to configure a static default gateway address on iLO while IP

Address and Subnet Mask are configured via DHCPv4.
• Requires iLO reset after write to take effect.

Community String 16 data 1:18 - Community String

Default = ‘public’. Used to fill in the ‘Community String’ field in a PET Trap.
This string may optionally be used to hold a vendor-specific string that is
used to provide the network name identity of the system that generated the
event. Printable ASCII string-. If a full 18 non-null characters are provided,
the last character does not need to be a null. 18 characters must be written
when setting this parameter, and 18 will be returned when this parameter is
read.

The null character, and any following characters, will be ignored when the
Community String parameter is placed into the PET. The BMC will return
whatever characters were written. For example, it will not set bytes following
the null to any particular value.

Number of Destinations

(Read Only)

17 data 1 - Number of LAN Alert Destinations supported on this channel. (Read
Only). At least one set of non-volatile destination information is required if
LAN alerting is supported. Additional non-volatile destination parameters can
optionally be provided for supporting an alert ‘call down’ list policy. A
maximum of fifteen (1h to Fh) non-volatile destinations are supported in this
specification. Destination 0 is always present as a volatile destination that is
used with the Alert Immediate command.

[7:4] - Reserved.

[3:0] - Number LAN Destinations. A count of 0h indicates LAN Alerting is not
supported.

iLO Notes:

• iLO Supports 15 non-volatile destinations.

Table Continued

Command specification 109



Parameter # Parameter Data (non-volatile unless otherwise noted)

Destination Type

(volatile / non-volatile -
see description)

18 Sets the type of LAN Alert associated with the given destination. This
parameter is not present if the Number of Destinations parameter is 0.

• data 1

- Set Selector = Destination selector, 0 based.

◦ [7:4] - Reserved
◦ [3:0] - Destination selector. Destination 0 is always present as a

volatile destination that is used with the Alert Immediate command.
• data 2

- Destination Type

◦ [7] - Alert Acknowledge.

– 0b = Unacknowledged. Alert is assumed successful if transmission
occurs without error. This value is also used with Callback
numbers.

– 1b = Acknowledged. Alert is assumed successful only if
acknowledged is returned. Note, some alert types, such as Dial
Page, do not support an acknowledge.

◦ [6:3] - Reserved
◦ [2:0] - Destination Type

– 000b = PET Trap destination
– 001b - 101b = Reserved
– 110b = OEM 1
– 111b = OEM 2

• data 3

- Alert Acknowledge Timeout / Retry Interval, in seconds, 0-based (for
example, minimum timeout = 1 second).

This value sets the timeout waiting for an acknowledge, or the time
between automatic retries depending on whether the alert is acknowledge
or not. Recommended factory default = 3 seconds. Value is ignored if alert
type does not support acknowledge, or if the Alert Acknowledge bit
(above) is 0b.

• data 4

- Retries

◦ [7:4] - Reserved
◦ [3] - Reserved
◦ [2:0] - Number of times to retry alert to given destination. 0 = no retries

(alert is only sent once). If the alert is acknowledged (Alert Acknowlege
bit = 1b) the alert will only be retried if a timeout occurs waiting for the
acknowledge. Otherwise, this value selects the number of times an
unacknowledged alert will be sent out. The timeout interval or time
between retries is set by the Alert Acknowledge Timeout / Retry
Interval value (byte 3 of this parameter).

Table Continued

110 Command specification



Parameter # Parameter Data (non-volatile unless otherwise noted)

Destination Addresses 19 Sets/Gets the list of IP addresses that a LAN alert can be sent to. This
parameter is not present if the Number of Destinations parameter is 0.

• data 1

- Set Selector = Destination Selector.

◦ [7:4] - Reserved
◦ [3:0] - Destination selector. Destination 0 is always present as a

volatile destination that is used with the Alert Immediate command.
• data 2

- Address Format

◦ [7:4] - Address Format.

0h = IPv4 IP Address followed by DIX Ethernet/802.3 MAC Address

1h = IPv6 IP Address
◦ [3:0] - Reserved

For Address Format = 0h:

• data 3

- Gateway selector

◦ [7:1] - Reserved
◦ [0] -

– 0b = Use default gateway (Note: Older implementations (errata 4 or
earlier) may only send to the default gateway.)

– 1b = Use backup gateway
• data 4:7

- Alerting IP Address (MS-byte first)
• data 8:13

- Alerting MAC Address (MS-byte first)

For Address Format = 1h:

data 3:18 — Alerting IPv6 Address (MS-byte first)

(Router MAC Address is obtained through Neighbor Discovery or using the
addressing specified using static router configuration in the LAN
Configuration Parameters)

iLO Notes:

• Only IPv4 destinations are supported (Address Format = 0h)
• Only IPv4 Default Gateway use is supported (Gateway selector = 0b)

Following parameters are introduced with IPMI v2.0 / RMCP+

VLAN configuration can be used with IPMI v1.5 and IPMI v2.0sessions. Parameters labeled “RMCP+” are specific
to IPMI v2.0 implementations that implement IPMI v2.0 / RMCP+ sessions.

Table Continued

Command specification 111



Parameter # Parameter Data (non-volatile unless otherwise noted)

802.1q VLAN ID (12-bit) 20 • data 1

[7:0] - Least significant 8-bits of the VLAN ID. 00h if VLAN ID not used.
• data 2

◦ [7] - VLAN ID enable.

– 0b = disabled
– 1b = Enabled.

If enabled, the BMC will only accept packets for this channel if they
have 802.1q fields and their VLAN ID matches the VLAN ID value
given in this parameter.

◦ [6:4] - Reserved
◦ [3:0] - Most significant four bits of the VLAN ID

iLO Notes:

• Only supported on iLO Shared Network Port (LOM or ALOM)
• VLAN ID must be zero when VLAN ID enable is disabled (0b)
• When enabled, VLAN ID must be between 1 and 4094.
• Requires iLO reset to take effect.

802.1q VLAN Priority 21 data 1

[7:3] - Reserved

[2:0] - Value for Priority field of 802.1q fields. Ignored when VLAN ID enable
is 0b (disabled) - See 802.1q VLAN ID parameter, above. Setting is network
dependent. By default, this should be set to 000b.

iLO Notes:

• Read only on iLO.
• Only value 000b is supported.

RMCP+ Messaging
Cipher Suite Entry
Support

(Read Only)

22 This parameter provides a count of the number (16 max.) of Cipher Suites
available to be enabled for use with IPMI Messaging on the given channel.

Software can find out what security algorithms are associated with given
Cipher Suite ID by using the Get Channel Cipher Suites command. In
addition, there are Cipher Suite IDs assigned for standard Cipher Suites (see
Table 22-19, Cipher Suite IDs)

data 1

[7:5] - reserved

[4:0] - Cipher Suite Entry count. Number of Cipher Suite entries, 1-based,
10h max.

Table Continued

112 Command specification



Parameter # Parameter Data (non-volatile unless otherwise noted)

Destination Address

VLAN TAGs

(can be READ ONLY,
see description)

25 Sets/Gets the VLAN IDs (if any) addresses that a LAN alert can be sent to.
This parameter is not present if the Number of Destinations parameter is 0,
or if the implementation does not support the use of VLAN IDs for alerts.
Otherwise, the number of VLAN TAG entries matches the number of Alert
Destinations.

An implementation may only be able to send alerts using the same VLAN
TAG configuration as specified by parameters 20 and 21, in which case this
parameter is allowed to be READ ONLY, where data 3-4 reflects the settings
of parameters 20 and 21, and data 2 [7:4] indicates that VLAN TAGs are
being used for alerts. If the implementation does support configurable VLAN
TAGs for alert destinations, it must support configuring unique TAG
information for all destinations on the given channel.

• data 1

- Set Selector = Destination Selector.

◦ [7:4] - Reserved
◦ [3:0] - Destination selector. Destination 0 is always present as a

volatile destination that is used with the Alert Immediate command.
• data 2

- Address Format

◦ [7:4] - Address Format.

– 0h = VLAN ID not used with this destination
– 1h = 802.1q VLAN TAG

◦ [3:0] - Reserved

For Address Format = 1h:

• data 3

:-

4

- VLAN TAG

◦ [7:0] - VLAN ID, least-significant byte
◦ [11:8] - VLAN ID, most-significant nibble
◦ [12] - CFI (Canonical Format Indicator. Set to 0b)
◦ [15:13] - User priority (000b, typical)

iLO Notes:

• This parameter is read-only on iLO.
• iLO only supports VLAN on its Shared Network Port.
• Reports VLAN ID from parameter 20 when VLAN is enabled.
• Reports VLAN ID not used when iLO Dedicated network port is selected.

Table Continued

Command specification 113



Parameter # Parameter Data (non-volatile unless otherwise noted)

IPv6/IPv4 Addressing
enables

51 This parameter is Mandatory if IPv6 addressing is supported.

data 1 —

The following values can be set according to the capabilities specified in
parameter 50.

• 00h = IPv6 addressing disabled.
• 01h = Enable IPv6 addressing only. IPv4 addressing is disabled.
• 02h = Enable IPv6 and IPv4 addressing simultaneously.

iLO Notes:

• iLO supports only 02h Enable IPv6 and IPv4 addressing simultaneously.

IPv6 Status (read only) 55 Provides the number of IPv6 addresses that are supported and configurable
for use by the BMC for IPMI.

This parameter is Mandatory if IPv6 addressing is supported.

data 1 — Static address max

Maximum number of static IPv6 addresses for establishing connections to
the BMC. Note: in some implementations this may exceed the number of
simultaneous sessions supported on the channel. 0 indicates that static
address configuration is not available.

data 2 — Dynamic address max

Maximum number of Dynamic (SLAAC/ DHCPv6) IPv6 addresses that can
be obtained for establishing connections to the BMC. Note: in some
implementations this may exceed the number of simultaneous sessions
supported on the channel. 0 = Dynamic addressing is not supported by the
BMC.

data 3 —

• [7:2] — Reserved
• [1]

◦ 1b = SLAAC addressing is supported by the BMC
• [0]

◦ 1b = DHCPv6 addressing is supported by the BMC (optional)

Table Continued

114 Command specification



Parameter # Parameter Data (non-volatile unless otherwise noted)

IPv6 Static Address 55 This parameter is Mandatory if IPv6 addressing is supported.

data 1 — Set Selector = Address selector, 0 based.

BMC shall provide at least one IPv6 Static Address entry if static address
configuration is supported. For the case of 0 Static addresses, only selector 0
is allowed, data[2:19] are reserved, data 20 = “disabled”.

data 2 — Address source/type

• [7] — Enable=1/disable=0
• [6:4] — Reserved
• [3:0] — Source/type

◦ 0h = Static
◦ All other = Reserved

data 3–18 — IPv6 Address, MS-byte first.

data 19 — Address Prefix Length

data 20 —Address Status (Read-only parameter). Writes to this location are
ignored.

• 00h = Active (in-use)
• 01h = Disabled
• 02h = Pending (currently undergoing DAD [duplicate address detection],

optional
• 03h = Failed (duplicate address found, optional
• 04h = Deprecated (preferred timer has expired, optional)
• 05h = Invalid (validity timer has expired, optional)
• All other — Reserved

iLO Notes:

• data 2

[7] = 0 disable will cause iLO to delete the static IPv6 address indicated by
the set selector (iLO does not support enable/disable of static
addresses.)This is the only way to delete a static IPv6 address on iLO.

Table Continued

Command specification 115



Parameter # Parameter Data (non-volatile unless otherwise noted)

IPv6 Dynamic (SLAAC/
DHCPv6) Address (read
only)

59 This parameter is Mandatory if IPv6 addressing is supported.

data 1 - Set Selector = Address selector, 0 based.

BMC shall provide at least one entry in the array. For the case of 0 SLAAC
and DHCPv6 addresses, only selector 0 is allowed, data[2:20] are reserved,
data 21 = “disabled”.

Mandatory if IPv6 addressing is supported.

data 2: Address source/type

[7:4] — Reserved

[3:0] — Source/type

• 0 — Reserved
• 1 — SLAAC (Stateless Address Auto Configuration)
• 2 — DHCPv6 (optional)
• Other — Reserved

data 3-18 - IPv6 Address, MS-byte first.

data 19 - Address Prefix Length.

data 20 - Address Status

• 0 — Active (in-use)
• 1 — Disabled
• 2 — Pending (currently undergoing DAD, optional)
• 3 — Failed (duplicate address found, optional)
• 4 — Deprecated (preferred timer has expired, optional)
• 5 — Invalid (validity timer has expired, optional)
• Other — Reserved

iLO Notes:

• iLO supports only Active and Deprecated status for dynamic addresses
• iLO does not support Disabled, Pending, Failed, or Invalid status for

dynamic addresses
• Failed addresses are never added to iLO’s network stack
• Invalid addresses are removed from iLO’s network stack and will not be

reported

Table Continued

116 Command specification



Parameter # Parameter Data (non-volatile unless otherwise noted)

IPv6 DHCPv6 Timing
Configuration Support

(read only)

62 This parameter is Mandatory if IPv6 addressing is supported.

data 1:

[7:2] — Reserved

[1:0]00b = DHCPv6 timing configuration per IPMI is not supported.

• 01b = ‘Global’ — Timing configuration applies across all interfaces (IAs)
that use dynamic addressing and have DHCPv6 is enabled.

• 10b = ‘Per interface’ - Timing is configurable for each interface and used
when DHCPv6 is enabled for the given interface (IA).

• 11b = Reserved

iLO Notes:

• iLO does not support modification of DHCPv6 timing. 00b is always
reported.

IPv6 Router Address
Configuration Control

64 This parameter is Mandatory if IPv6 addressing is supported.

Router discovery is part of support for SLAAC and DHCPv6 addressing
(dynamic addressing). This parameter controls whether automated router
discovery occurs when static addresses are used for the BMC. It also
enables the use of static router addresses.

data 1:

[7:2] — Reserved

[1]

• 1b = Enable dynamic router address configuration via router
advertisement messages. Router solicitation messages are sent with
timing and behavior as specified in [RFC4861]. The router solicitation
timing values from the IPv6 Neighbor Discovery/SLAAC Timing
Configuration parameter (below) are used if that parameter is
implemented.

[0]

• 1b = enable static router address. If static and dynamic router addressing
are enabled, the BMC shall attempt to use the static router address and
prefix first.

iLO Notes:

• iLO only supports having both static and dynamic router address sources
enabled. Neither source can be disabled.

• iLO does not follow the static router address first rule, router address in
use is determined by iLO’s network stack using the rules found in
RFC4861.

IPv6 Static Route 65–72 Parameters 65-72 are not supported by iLO.

Table Continued

Command specification 117



Parameter # Parameter Data (non-volatile unless otherwise noted)

IPv6 Neighbor
Discovery / SLAAC
Timing Configuration
Support

(read only)

79 This parameter is Mandatory if IPv6 static router address configuration is
supported.

data 1:

[7:2] — Reserved

[1:0]

• 00b = IPv6 Neighbor Discovery / SLAAC timing configuration per IPMI is
not supported.

• 01b = ‘Global’ - Timing configuration applies across all interfaces (IAs)
that have IPv6 dynamic addressing enabled.

• 10b = ‘Per interface’ - Timing is configurable for each interface and used
when IPv6 dynamic addressing is enabled for the given interface (IA).

• 11b = Reserved

iLO Notes:

• iLO does not support changing these timing parameters, 00b is always
returned.

iLO IPv4 Options 192 iLO IPv4 Option Controls

data 1:

[7:3] — Reserved

[2] — 1b = Enable WINS registration.

[1] — 1b = Enable DDS registration for IPv4 Addresses.

[0] — 1b = Enable Gateway Ping on Startup.

data 2:

[7:0] — Reserved

iLO Notes:

• Changes require iLO reset to take effect.

Table Continued

118 Command specification



Parameter # Parameter Data (non-volatile unless otherwise noted)

iLO DHCPv4 Opions 193 iLO DHCPv4 Client Option Controls

data 1:

[7:1] — Reserved

[0] — 1b = Enable DHCPv4 address and subnet mask assignment

data 2:

[7:6] — Reserved

[5] — 1b = Enable DHCPv4 configuration of WINS servers

[4] — 1b = Enable DHCPv4 configuration of NTP servers

[3] — 1b = Enable DHCPv4 configuration of DNS servers

[2] — 1b = Enable DHCPv4 configuration of iLO Domain Name

[1] — 1b = Enable DHCPv4 configuration of IPv4 Static Routes

[0] — 1b = Enable DHCPv4 configuration of IPv4 Default Gateway Address

iLO Notes:

• Enable DHCPv4 in data 1 must also be set in order to set any options in
data 2

• Clearing the enable DHCPv4 bit in data 1 will clear all data 2 options
• Changes require iLO reset to take effect

iLO IPv4 DNS Server
Addresses

194 iLO Static IPv4 DNS Server Addresses

data 1: Set selector (0-primary, 1-secondary, 2-tertiary)

data 2: Maximum number of IPv4 DNS addresses that can be set/read (write
is ignored, 3 for iLO currently)

data 3:6: DNS Address, MSB first

iLO Notes:

• When iLO IPv4 DNS server address is configured through DHCPv4, this
parameter is read-only and will report the addresses provided by the
DHCPv4 server.

• Changes require iLO reset to take effect.

iLO IPv4 WINS Server
Addresses

195 iLO Static WINS Server Addresses

data 1: Set selector (0–primary, 1–secondary)

data 2: Maximum number of WINS server addresses that can be set/read
(writes to this byte are ignored, 2 for iLO currently)

data 3:6: WINS Server Address, MSB first

iLO Notes:

• When iLO WINS server addresses are configured by DHCPv4, this
parameter is read-only and will report the addresses provided by the
DHCPv4 server.

• Changes require iLO reset to take effect.

Table Continued

Command specification 119



Parameter # Parameter Data (non-volatile unless otherwise noted)

iLO IPv4 Static Routes 196 iLO Static IPv4 Route Table Entries

data 1

: Set selector (0–2 for iLO currently)

data 2: Maximum number of IPv4 static routes that can be set/read (writes to
this byte are ignored, 3 for iLO currently)

data 3:6: Destination address for this route table entry, MSB first

data 7:10: Destination address subnet mask for this route table entry, MSB
first

data 11:14: Gateway address for this route table entry, MSB first

iLO Notes:

• When iLO IPv4 Static Routes are set to be configured by DHCPv4, this
parameter is read-only, and will report the addresses provided by the
DHCPv4 server.

• Changes require iLO reset to take effect.

iLO Shared NIC
Selection and Shared
NIC Port Number

197 iLO Shared NIC and Port Number Selection

data 1:

• Shared NIC Selection
• 01h = LOM
• 02h = ALOM
• All others = reserved

data 2:

• Shared NIC Port Number
• 01h = Use NIC port 1
• 02h = Use NIC port 2
• All others = reserved

data 3: LOM/ALOM support status (writes to this byte are ignored)

• [7:2] — Reserved
• [1] — 1b = Platform supports ALOM shared NIC
• [0] — 1b = Platform supports LOM shared NIC

iLO Notes:

• for Dedicated/Shared NIC selection
• Shared NIC port number selection is not supported by all iLO Shared

NICs, and will revert to port number 1 after iLO reset when unsupported.
• Changes require iLO reset to take effect.

Table Continued

120 Command specification



Parameter # Parameter Data (non-volatile unless otherwise noted)

iLO Ethernet Link Speed
and Duplex

198 iLO Dedicated NIC Ethernet Link Speed and Duplex (set selector is ignored)

data 1:

• [7:6] — Reserved
• [5] — Autonegotiation Mode read-only status.

◦ 0b — Autonegotiation mode is confuigurable.
◦ 1b — Autonegotiation mode is read-only (blades and shared NIC)

• [4] — Autonegotiation mode validity.

◦ 0b — Autonegotiation mode status is unknown (shared NIC)
◦ 1b — Autonegotiation mode as reported is valid.

• [3] — Link status validity (link-state, link-duplex, link-speed)

◦ 0b = Link status data reported is not valid (inactive NIC)
◦ 1b = Link status data is valid.

• [2] — Link-duplex.

◦ ])
◦ 1b = Link active.

• [1] — Link-duplex.

◦ ])
• [0] — Autonegotiation Mode

◦ 0b = Using manual settings or autonegotiation mode unknown

])
◦ 1b = Use autonegotiation mode.

data 2: — Link speed.

• 00h = 10 Mb/sec
• 01h = 100 Mb/sec
• 02h = 1000 Mb/sec
• FFh = Link-speed is unknown
• All others = reserved

iLO Notes:

• Only data2 and data1s bits [0] and [1] are configurable, if at all.
• data1 [0] Autonegotiation mode is only configurable when data1 [5] is

reported as 0b.
• Speed and duplex on writes are ignored when set to autonegotiation

mode.
• Speed and duplex will report unknown for autonegotiation mode when the

link-state indicator (data1 [2]) shows link inactive or unknown.
• When in autonegotiation mode, link-speed, duplex, and state are only

valid when data1 [3] is 1b.
• When in manual settings mode, link-speed and duplex indicate

configuration regardless of the state of data1 [3].
• Autonegotiation mode is forced on for blades and cannot be configured

off.

Table Continued

Command specification 121



Parameter # Parameter Data (non-volatile unless otherwise noted)

• Autonegotiation mode is unknown for shared NICs (it is controlled by the
host NIC configuration and is not visible to iLO.)

• Changes to this parameter require iLO reset to take effect.

iLO Network
Configuration Status and
NIC Selection

224 iLO Network Configuration Update Counters.

iLO Dedicated/Shared NIC Selection.

iLO Network Configuration Status.

data 1:

• IPv6 Configuration Counter. Unsigned 8–bit counter, updated each time
IPv6 configuration is modified.

data 2:

• IPv4 Configuration Counter. Unsigned 8–bit counter, updated each time
IPv4 configuration is modified.

data 3:

• Selected iLO NIC.

◦ 0h = iLO Dedicated NIC is selected.
◦ 1h = iLO Shared NIC is selected.
◦ All others = reserved

data 4: iLO Network Configuration Status.

[7:1] — Reserved

[0]

• 0b = All settings are in use currently.
• 1b = iLO reset needed for some settings changes that have been made.

iLO Notes:

• Reading full iLO IP configuration through IPMI requires many individual
transactions. To guarantee that no other iLO UI made network
configuration changes during that process the configuration counters for
IPv4 and IPv6 can be read at the beginning and at the end of reading iLO
configuration. If the start and end counter values match, then no
configuration changes occurred during the reading process.

• The IPv6 configuration counter does not record changes to IPv6 address
status.

• When writing changes to data 3, NIC selection:

◦ data 1 must be AAh
◦ data 2 must be 55h
◦ data 4 must be FFh

Table Continued

122 Command specification



Parameter # Parameter Data (non-volatile unless otherwise noted)

iLO IPv6 Options 225 iLO IPv6 Option Enables

data 1:

[7:3] — Reserved

[2] — 1b = Enable SLAAC Address Creation from Router Advertisements.

[1] — 1b = Enable DDNS registration of IPv6 addresses.

[0] — 1b = iLO client applications prefer IPv6 protocol first over IPv4.

data 2

: — Reserved

iLO Notes:

• bit [2] of data 1 only disables SLAAC address creation. Router
Advertisement messages will still continue to be processed for other
information, even when it is set to 0b.

• Changes to SLAAC and DDNS enables require iLO reset take effect.

iLO DHCPv6 Options 226 iLO DHCPv6 Configuration Control Enables

data 1

:

[7:3] — Reserved

[2] — 1b = Enable DHCPv6 Rapid Commit Mode

[1] — 1b = Enable Stateless DHCPv6 Mode

[0] — 1b = Enable Stateful DHCPv6 Mode

data 2

[7:3] — Reserved

[2] — 1b = Enable DHCPv6 configuration of iLO Domain Name.

[1] — 1b = Enable DHCPv6 configuration of IPv6 DNS server addresses.

[0] — 1b = Enable DHCPv6 configuration of IPv6 NTP server addresses.

iLO Notes:

• When both DHCPv4 and DHCPv6 are enabled to configure iLO Domain
Name and the two servers provide different names, the DHCPv6 provided
name will generally take precedence.

• When DHCPv6 Stateful mode is enabled. Stateless mode is always
enabled by default (Stateless mode cannot be disabled when stateful
mode is enabled.)

• DHCPv6 Rapid Commit mode should not be enabled in network
environments where more than one DHCPv6 server may be enabled to
provide address and configuration data.

• Changes to DHCPv6 enabled/disabled status require iLO reset to take
effect.

Table Continued

Command specification 123



Parameter # Parameter Data (non-volatile unless otherwise noted)

iLO IPv6 DNS Server
Addresses

227 IPv6 Based DNS Server Addresses for iLO

data 1: Set selector (0 — primary 1 — secondary, 2 — tertiary)

data 2: Maximum number of IPv6 DNS addresses that are supported (writes
ignored, 3 for iLO currently)

data [3:18]: DNS Address, MSB first

iLO Notes:

• When DHCPv6 is configuring the IPv6 DNS address list, this parameter is
read-only and returns the values provided by the DHCPv6 server.

iLO IPv6 Static Route
Destination

228 Destination Address for an IPv6 Static Route Table Entry

data 1: Set selector (0–2 for iLO currently)

data 2

[7] — 1b = Route table entry is enabled

[6]

• 1b = Route table entry failed
• 0b = Entry is active

[5:0] — Reserved

data 3: Maximum number of routes that are supported (writes ignored, 3 for
iLO currently)

data [4:19]: IPv6 Destination address (network prefix) for this route table
entry, MSB first.

data 20: Network prefix length for this destination address.

iLO Notes:

• This parameter works together with parameter 229 below to specify/status
a complete iLO IPv6 static route table entry.

• To set a static route table entry, fist write parameter 229 with the
corresponding IPv6 gateway address, and then next write this parameter
with the destination and network prefix length for the entry.

• To read a static route table entry, first read this parameter, and then read
the corresponding gateway address using parameter 229.

• To delete an IPv6 static route table entry, set its enable bit in data 2 to
disabled (parameter 229 does not need to be specified first in this case.)

• Suggest using the Set In Progress indicator when reading and writing
IPv6 static routes to prevent interaction between simultaneous IPMI
sessions.

Table Continued

124 Command specification



Parameter # Parameter Data (non-volatile unless otherwise noted)

iLO IPv6 Static Route
Gateway

229 Gateway address for an IPv6 Static Route Table Entry

data 1: Set selector (0–2 for iLO currently.)

data [2:17]: IPv6 Gateway address. MSB first.

iLO Notes:

• This parameter works in conjunction with parameter 228 above. See the
notes for parameter 228 usage.

• When clearing/disabling an IPv6 static route table entry, this parameter
does not need to be specified.

• IPv6 gateway addresses are typically link-local. Non-link local addresses
used as a gateway address can cause the route table entry to fail when a
no route to the specified gateway address condition is encountered (this
will never happen when link-local gateway addresses are used.)

iLO IPv4 Static IPv6
Default Gateway

230 Static Default Gateway IPv6 Address

data 1: Set selector (0 only for iLO currently.)

data 2: Maximum number of static default gateway addresses supported
(writes ignored, currently 1 for iLO.)

data [3:18]: IPv6 Gateway address, MSB first.

iLO Notes:

• IPv6 gateway addresses are typically link-local. Non-link local addresses
used as a gateway address can cause the route table entry to fail when a
no route to the specified gateway address condition is encountered (this
will never happen when link-local gateway addresses are used.)

• This entry is simply added to the gateway address table that is maintained
by iLO’s network stack as a possible gateway. There is no prioritization
among the addresses in the gateway address table, and the network
stack switches among them using the rules specified in RFC4861.

• This parameter can be used to specify a default IPv6 gateway address in
a network environment where no Router Advertisement messages are
available.

iLO Current IPv6 Default
Gateway (read-only)

231 Read only status indicates the IPv6 default gateway currently in use by iLO.

data [1:16]: Current default IPv6 gateway address in use.

iLO Notes:

• Only valid for the currently selected iLO NIC.
• Indicates the default gateway address currently being used for forwarding

messages to off-link destinations. The address could be either the static
default gateway address (if specified,) or a gateway address that was
learned through router advertisement messages received by iLO.

Procedure

1. Write this (and possibly parameter 197) to the desired NIC selection
2. Configure all other relevant network parameters for the desin
3. Reset iLO. The desired NIC will be in use after iLO reset.

Command specification 125



SOL commands

Set SOL configuration parameters command
This command is available to the MC.

This command is used for setting parameters such as the network addressing information required for SOL
payload operation. Parameters can be volatile or non-volatile.

Table 56: Set SOL configuration parameters command request and response data

Request data
byte number

Data field

1 • [7:4] — Reserved
• [3:0] — Channel number

2 Parameter selector

3:N Configuration parameter data. See Get SOL configuration parameters command.

.

Response data
byte number

Data field

1 Completion code.

• 80h = Parameter not supported.
• 81h = Attempt to set the set in progress value (in parameter #0) when not in the set

complete state. (This completion code provides a way to recognize that another party
has already “claimed” the parameters).

• 82h = Attempt to write read-only parameter.
• 83h = Attempt to read write-only parameter.

Get SOL configuration parameters command
This command is available to the MC.

This command is used for retrieving the configuration parameters from the set sol configuration
parameters command.

Table 57: Get SOL configuration parameters command request and response data

Request data
byte number

Data field

1 • [7]

◦ 0b = Get parameter
◦ 1b = Get parameter revision only

• [6:4] — Reserved
• [3:0] — Channel number

2 Parameter selector

Table Continued

126  SOL commands



3 Set selector. Selects a given set of parameters under a given parameter selector value.
00h if parameter does not use a set selector.

4 Block selector (00h if parameter does not require a block number).

Response data
byte number

Data field

1 Completion code. Generic codes, plus command-specific completion code: 80h =
parameter not supported.

[7:0] - Parameter revision. Format: MSN = present revision. LSN = oldest revision
parameter in which it is backward compatible. 11h for parameters in this specification.

The following data byte is not returned when the get parameter revision only bit is 1b.

3:N Configuration parameter data, per the following SOL configuration parameters table.

If the rollback feature is implemented, the MC makes a copy of the existing parameters
when the set in progress state becomes asserted. (See the set in progress parameter
#0). While the set in progress state is active, the MC returns data from this copy of the
parameters, plus any uncommitted changes that were made to the data. Otherwise, the
MC returns parameter data from non-volatile storage.

Table 58: SOL configuration parameters

Parameter # Parameter Data (non-volatile unless otherwise noted)
1

Set In Progress (volatile) 0 Data 1 - This parameter is used to indicate when any of the following
parameters are being updated, and when the updates are completed.
The bit is primarily provided to alert software that some other software or
utility is in the process of making changes to the data.

An implementation can also elect to provide a rollback feature that uses
this information to decide whether to roll back to the previous
configuration information, or to accept the configuration change.

If used, the roll back restores all parameters to their previous state.
Otherwise, the change takes effect when the write occurs.

[7:2] Reserved

[1:0] 00b = Set complete. If a system reset or transition to
powered down state occurs while set in progress
is active, the MC goes to the set complete state. If
rollback is implemented, going directly to set
complete without first doing a commit write
causes any pending write data to be discarded.

Table Continued

Command specification 127



Parameter # Parameter Data (non-volatile unless otherwise noted)
1

01b = Set in progress. This flag indicates that some
utility or other software is presently doing writes to
parameter data. It is a notification flag only, it is
not a resource lock. The MC does not provide any
interlock mechanism that would prevent other
software from writing parameter data.

10b = Commit write (optional). This is only used if a
rollback is implemented. The MC saves the data
that has been written since the last time it was set
in progress and then goes to the set in progress
state. An error completion code will be returned if
this option is not supported.

11b = Reserved

SOL enable 1 Byte 1:

[7:1] Reserved

[0] SOL enable. This controls whether the SOL
payload type can be activated. Whether an SOL
stream can be established is also dependent on
the access mode and authentication settings for
the corresponding LAN channel. The enabled/
disabled state and access mode settings for the
serial/modem channel have no effect on SOL.

1b = Enable SOL payload

0b = Disable SOL payload

SOL authentication 2 Byte 1: SOL authentication enable

[7] Force SOL payload encryption

1b: Force encryption. If the cipher suite for the
session supports encryption, this setting forces
the use of encryption for all SOL payload data.

Table Continued

128 Command specification



Parameter # Parameter Data (non-volatile unless otherwise noted)
1

0b: Encryption controlled by remote console. Whether
SOL packets are encrypted or not is selected by
the remote console at the time the payload is
activated (using the

activate payload
command) and can be changed during operation
via the

suspend/resume payload encryption
command.

[6] Force SOL payload authentication

1b: Force authentication. If the cipher suite for the
session supports authentication, this setting
forces the use of authentication on all SOL
payload data.

0b: Authentication controlled by remote software. For
the standard cipher suites, if encryption is used
then authentication must also be used. Therefore,
while encryption is being used, software is not be
able to select using unauthenticated payloads.

[5:4] Reserved

[3:0] SOL privilege level. Sets the minimum operating privilege level
that is required to be able to activate SOL using the

activate payload
command.

0h: Reserved

1h: Reserved

2h: User level

3h: Operator level

4h: Administrator level

5h: OEM proprietary level

All other : Reserved

Table Continued

Command specification 129



Parameter # Parameter Data (non-volatile unless otherwise noted)
1

Character accumulate
interval & character
send threshold

3 • Byte 1: Character accumulate interval in 5 ms increments. 1-based.
This sets the typical amount of time that the MC waits before
transmitting a partial SOL character data packet. (Where a partial
packet is defined as a packet that has fewer characters to transmit
than the number of characters specified by the Send threshold
parameter (see below). A packet is not sent.

00h = reserved
• Byte 2: Character send threshold. 1-based. The MC automatically

sends an SOL character data packet containing this number of
characters as soon as this number of characters (or greater) has
been accepted from the baseboard serial controller into the MC. This
provides a mechanism to tune the buffer to reduce latency to when
the first characters are received after an idle interval. In the
degenerate case, setting this value to 1 would cause the MC to send
a packet as soon as the first character was received.

This can be useful if the character accumulate interval is large. If the
MC is waiting for an acknowledge from the previous packet, it ignores
this threshold and continues to collect data until it has a full packet’s
worth.

SOL retry 4 • Byte 1: Retry count

◦ [7:3] - Reserved
◦ [2:0] - Retry count. 1-based. 0 = no retries after packet is

transmitted. Packet is dropped if no ACK/NACK received by the
time retries expire.

• Byte 2: Retry interval. 1-based. Retry interval in 10 ms increments.
Sets the time that the MC waits before the first retry and the time
between retries when sending SOL packets to the remote console.

◦ 00h: Retries sent back-to-back

SOL non-volatile bit rate
(non-volatile)

5 This configuration parameter is not supported if the implementation does
not have a MC serial controller that can be potentially configured.

Serial communication with the MC when SOL is activated always occurs
using 8 bits/character, no parity, 1 stop bit, and RTS/CTS (hardware) flow
control.

NOTE:

If SOL is enabled for multiple LAN channels, the MC uses the
serial communication settings for the channel over which the
activate sol command was initially received. The settings for
other channels are ignored.

Data 1

[7:4] Reserved

Table Continued

130 Command specification



Parameter # Parameter Data (non-volatile unless otherwise noted)
1

[3:0] Bit rate. 1-5h = reserved. Support for bit rates other than 19.2
kbps is optional. The MC must return an error completion if a
requested bit rate is not supported. It is recommended that the
parameter out-of-range (C9h) code be used for this situation.

0h = Use setting presently configured for IPMI over
serial channel. The setting is used even if the
access mode for the serial channel is set to
disabled. IPMI specification can allow more than
one serial channel. If serial port sharing is not
implemented, this value is reserved. 6h: 9600
bps.

7h = 19.2 kbps

8h = 38.4 kbps

9h = 57.6 kbps

Ah = 115.2 kbps

All other = Reserved

SOL volatile bit rate
(volatile)

6 Set volatile version of SOL serial settings. Data follows that for the SOL
non-volatile bit rate parameter.

SOL payload channel
(optional, read only)

7 This parameter indicates which IPMI channel is being used for the
communication parameters (such as IP address, MAC address) for the
SOL payload. Typically, these parameters come from the same channel
that the

activate payload
command for SOL was accepted.

SOL payload port
number (read only or
read/write)

8 This parameter is read/write when the implementation allows the port
number over which the SOL payload can be activated to be configurable.
Otherwise, it is a read only parameter.

Data 1:2 - Primary RMCP port number, LS byte first.

OEM parameters 192:25
5

This range is available for special OEM configuration parameters. The
OEM is identified according to the manufacturer ID field returned by the

get device id
command.

1 Choice of system manufacturing defaults is left to the system manufacturer unless otherwise specified.

MC watchdog timer commands
The MC implements a standardized watchdog timer that can be used for a number of system timeout
functions by system management software or by the BIOS. Setting a timeout value of 0 allows the selected

MC watchdog timer commands 131



timeout action to occur immediately. This provides a standardized means for devices on the IPMB, such as
remote management cards, to perform emergency recovery actions.

Watchdog timer actions
The following actions are available on expiration of the watchdog timer:

• System reset
• System power off
• System power cycle
• Pre-timeout interrupt (optional)

The system reset on timeout, system power off on timeout, and system power cycle on timeout action
selections are mutually exclusive. The watchdog timer is stopped whenever the system is powered-down. A
command must be sent to start the timer after the system powers up.

Watchdog timer use field and expiration flags
The watchdog timer provides a timer use field that indicates the current use assigned to the watchdog timer.
The watchdog timer provides a corresponding set of timer use expiration flags that are used to track the type
of timeout that had occurred.

The timeout use expiration flags retain their state across system resets and power cycles, as long as the MC
remains powered. The flags are normally cleared solely by the set watchdog timer command; with the
exception of the don’t log flag, which is cleared after every system hard reset or timer timeout.

The timer use fields indicate:

Timer use field Description

BIOS FRB2 timeout An FRB-2 (fault-resilient booting, level 2) timeout has occurred indicating
that the last system reset or power cycle was due to the system timeout
during POST, presumed to be caused by a failure or hang related to the
bootstrap processor.1

BIOS POST timeout In this mode, the timeout occurred while the watchdog timer was being
used by the BIOS for some purpose other than FRB-2 or OS load
watchdog.

OS load timeout The last reset or power cycle was caused by the timer being used to
watchdog the interval from boot to OS up and running. This mode
requires system management software, or OS support. BIOS should
clear this flag if it starts this timer during POST.

SMS OS watchdog timeout Indicates that the timer was being used by SMS. During run-time, SMS
starts the timer, then periodically resets it to keep it from expiring. This
periodic action serves as a heartbeat that indicates that the OS (or at
least the SMS task) is still functioning. If SMS hangs, the timer expires
and the MC generates a system reset. When SMS enables the timer, it
should make sure the SMS bit is set to indicate that the timer is being
used in its OS watchdog role.

OEM Indicates that the timer was being used for an OEM-specific function.
1 In a multiprocessor system, the bootstrap processor is defined as the processor that, on system power-up

or hard reset, is allowed to run and execute system initialization (BIOS POST) while the remaining
processors are held in an idle state awaiting startup by the multiprocessing OS.

132  Watchdog timer actions



Using the timer use field and expiration flags
The software that sets the timer use field is responsible for managing the associated timer use expiration flag.
For example, if SMS sets the timer use to SMS/OS watchdog, then that same SMS is responsible for acting
on and clearing the associated timer use expiration flag.

In addition, software should only interpret or manage the expiration flags for watchdog timer uses that it set.
For example, BIOS should not report watchdog timer expirations or clear the expiration flags for non-BIOS
uses of the timer. This is to allow the software that did set the timer use to see that a matching expiration
occurred.

Watchdog timer event logging
By default, the MC automatically logs the corresponding sensor-specific watchdog sensor event when a timer
expiration occurs. A don’t log bit is provided to temporarily disable the automatic logging. The don’t log bit is
automatically cleared (logging re-enabled) whenever a timer expiration occurs.

Pre-timeout interrupt
The watchdog timer offers a pre-timeout interrupt option. This option is enabled whenever the interrupt on
timeout option is selected along with any of the other watchdog timer actions. If this option is enabled, the MC
generates the selected interrupt a fixed interval before the timer expires. This feature can be used to allow an
interrupt handler to intercept the timeout event before it actually occurs. The default pre-timeout interrupt
interval is one (1) second.

The watchdog timeout action and the pre-timeout interrupt functions are individually enabled. Thus, the
watchdog timer can be configured so that when it times out it provides just an interrupt, just the selected
action, both an interrupt and selected action, or none.

If the pre-timeout interval is set to zero, the pre-timeout action occurs concurrently with the timeout action. If a
power or reset action is selected with a pre-timeout interval of zero, there is no guarantee that a pre-timeout
interrupt handler would have time to execute, or to run to completion.

Pre-timeout interrupt support detection
An application that wishes to use a particular pre-timeout interrupt can check for its support by issuing a set
watchdog timer command with the desired pre-timeout interrupt selection. If the controller does not return
an error completion code, then a get watchdog timer command should be issued to verify that the
interrupt selection was accepted.

While it can be assumed that a controller that accepts a given interrupt selection supports the associated
interrupt, it is recommended that, if possible, an application also generate a test interrupt and verify that the
interrupt occurs and the handler executes correctly.

BIOS support for watchdog timer
If a system warm reset occurs, the watchdog timer may still be running while BIOS executes POST.
Therefore, BIOS should take steps to stop or restart the watchdog timer early in POST. Otherwise, the timer
may expire later during POST or after the OS has booted.

Reset watchdog timer command
This command is used for starting and restarting the watchdog timer from the initial countdown value that was
specified in the set watchdog timer command. If a pre-timeout interrupt has been configured, the reset
watchdog timer command is not restart the timer once the pre-timeout interrupt interval has been reached.
The only way to stop the timer once it has reached this point is via the set watchdog timer command.

Watchdog timer event logging 133



Table 59: Reset watchdog timer command response data

Response data
byte number

Data field

1 Completion code. Generic plus command-specific completion code: 80h — Attempt to
start un-initialized watchdog. It is recommended that a MC implementation return this
error completion code to indicate to software that a

set watchdog timer
command has not been issued to initialize the timer since the last system power on,
reset, or MC reset. Since many systems may initialize the watchdog timer during BIOS
operation, this condition may only be seen by software if a MC gets re-initialized during
system operation (as might be the case if a firmware update occurred, for example).

Set watchdog timer command
This command is used for initializing and configuring the watchdog timer. The command is also used for
stopping the timer.

If the timer is already running, the set watchdog timer command stops the timer (unless the don’t stop bit
is set) and clears the watchdog pre-timeout interrupt flag. MC hard resets, system hard resets, and the cold
reset command also stop the timer and clear the flag.

• Byte 1 is used for selecting the timer use and configuring whether an event will be logged on expiration.
• Byte 2 is used for selecting the timeout action and pre-timeout interrupt type.
• Byte 3 sets the pre-timeout interval. If the interval is set to zero, the pre-timeout action occurs concurrently

with the timeout action.
• Byte 4 is used for clearing the timer use expiration flags. A bit set in byte 4 of this command clears the

corresponding bit in byte 5 of the

get watchdog timer
command.

• Bytes 5 and 6 hold the least significant and most significant bytes, respectively, of the countdown value.
The watchdog timer decrement is one count/100 ms. The counter expires when the count reaches zero. If
the counter is loaded with zero and the

reset watchdog
command is issued to start the timer, the associated timer events occur immediately.

Table 60: Set watchdog timer command request and response data

Request data
byte number

Data field

1 Timer use

[7] 1b = Don't log

Table Continued

134  Set watchdog timer command



[6] 1b = Don't stop the timer on

set watchdog timer
command. New parameters take effect immediately. If the timer is
already running, the countdown value gets set to the given value and
the countdown continues from that point. If the timer is already
stopped, it remains stopped. If the pre-timeout interrupt bit is set, it is
cleared.
1

0b = Timer stops automatically when the

set watchdog timer command
is received.

[5:3] Reserved

[2:0] Timer use (logged on expiration when don't log bit = 0b)

000b = Reserved

001b = BIOS FRB2

010b = BIOS/POST

011b = OS Load

100b = SMS/OS

101b = OEM

110b
-111b =

Reserved

2 Timer actions

[7] Reserved

[6:4] Pre-timeout interrupt (logged on expiration when don’t log bit = 0b)

000b = None

001b = SMI (optional)

010b = NMI / diagnostic interrupt (optional)

011b = Messaging interrupt (this is the same interrupt as allocated to the
messaging interface, if communications interrupts are supported for
the system interface).

100b,111b
=

Reserved

Table Continued

Command specification 135



[3] Reserved

[2:0] Timeout action

000b = No action

001b = Hard reset

010b = Power down

011b = Power dycle

100b,111b
=

Reserved

3 Pre-timeout interval in seconds. 1 based.

4 Timer use expiration flags clear. (0b = leave alone, 1b = clear timer use expiration bit).

[7] Reserved

[6] Reserved

[5] OEM

[4] SMS/OS

[3] OS load

[2] BIOS/POST

[1] BIOS FRB2

[0] Reserved

5 Initial countdown value, LS byte (100 ms/count)

6 Initial countdown value, MS byte

Response
data byte
number

Data field

1 Completion code
1 Potential race conditions exist with implementations of this option. If the set watchdog timer command

is sent just before a pre-timeout interrupt or timeout is set to occur, the timeout could occur before the
command is executed. To avoid this condition, it is recommended that software set this value no closer than
3 counts before the pre-timeout or timeout value is reached.

Get watchdog timer command
This command retrieves the current settings and present countdown of the watchdog timer. The timer use
expiration flags in byte 5 retain their states across system resets and system power cycles. With the
exception of bit 6 in the timer use byte, the timer use expiration flags are cleared using the set watchdog
timer command. They may also become cleared because of a loss of MC power, firmware update, or other

136  Get watchdog timer command



cause of MC hard reset. Bit 6 of the timer use byte is automatically cleared to 0b whenever the timer times
out, is stopped when the system is powered down, enters a sleep state, or is reset.

Table 61: Get watchdog timer command response data

Response
data byte
number

Data field

1 Completion code

2 Timer use

[7] 1b = Don't log

[6] 1b = Timer is started (running)

0b = Timer is stopped

[5:3] Reserved

[2:0] Timer use (logged on expiration when don't log bit = 0b)

000b = Reserved

001b = BIOS FRB2

010b = BIOS/POST

011b = OS Load

100b = SMS/OS

101b = OEM

110b
-111b =

Reserved

3 Timer actions

[7] Reserved

[6:4] Pre-timeout interrupt (logged on expiration when don’t log bit = 0b)

000b = None

001b = SMI (if implemented)

010b = NMI / diagnostic interrupt (if implemented)

011b = Messaging interrupt (this is the same interrupt as allocated to the
messaging interface).

Table Continued

Command specification 137



100b,111b
=

Reserved

[3] Reserved

[2:0] Timeout action

000b = No action

001b = Hard reset

010b = Power down

011b = Power dycle

100b,111b
=

Reserved

4 Pre-timeout interval in seconds. 1 based.

5 Timer use expiration flags clear. (1b = timer expired while associated use was selected.)

[7] Reserved

[6] Reserved

[5] OEM

[4] SMS/OS

[3] OS load

[2] BIOS/POST

[1] BIOS FRB2

[0] Reserved

6 Initial countdown value, LS byte (100 ms/count)

7 Initial countdown value, MS byte

Table Continued

138 Command specification



8 Present countdown value, LS byte. The initial countdown value and present countdown
values should match immediately after the countdown is initialized via a

set watchdog timer
command and after a

reset watchdog timer
has been executed. Internal delays in the MC may require software to delay up to 100 ms
before seeing the countdown value change and be reflected in the

get watchdog timer
command.

9 Present countdown value, MS byte

Chassis commands
The following chassis commands are specified for IPMI v1.5. These commands are primarily to provide
standardized chassis status and control functions for remote management cards and remote consoles that
access the MC. They can also be used for emergency management control functions by system management
software.

Get chassis capabilities command
This command returns information about which main chassis management functions are present on the IPMB
(or virtual IPMB) and what addresses are used to access those functions. This command is used to find the
devices that provide functions such as SEL, SDR, and ICMB bridging so that they can be accessed via
commands delivered via a physical or logical IPMB. The command does not include a channel number for the
individual functions, therefore all reported functions must be located on the primary IPMB.

The chassis capabilities information is non-volatile. There is no requirement that the information be
configurable. The chassis device function in a peripheral chassis may be hardcoded with this information. For
example, a system that implements the ICMB as an add-on bridge to an MC is typically able to have the well
known address for the MC (20h) hardcoded as the address for the chassis SDR, SEL, and SM devices, while
the chassis FRU info device address could be set with the chassis devices own address.

An add-in device that serves as a bridge device that could be used in different vendors systems may want to
provide a way for this information to be configured. The set chassis capabilities command is one
option for providing this.

Table 62: Get chassis capabilities command response data

Response
data byte
number

Data field

1 Completion code

2 Capabilities flags

[7:4] Reserved

[3] 1b = Provides power interlock (IPMI 1.5)

Table Continued

Chassis commands 139



[2] 1b = Provides diagnostic interrupt, FP NMI. (IPMI 1.5)

[1] 1b = Provides front panel lockout which indicates that the chassis has
capabilities to lock out external power control and reset button or front
panel interfaces and/or detect tampering with those interfaces.

[0] 1b = Chassis provides intrusion (physical security) sensor

3 Chassis FRU info device address. All IPMB addresses used in this command have the 7-bit
I
2

C slave address as the most-significant 7-bits and the least significant bit set to 0b. 00h =
unspecified.

4 Chassis SDR device address

5 Chassis SEL device address

6 Chassis system management device address

(7) Chassis bridge device address. Reports location of the ICMB bridge function. If this field is
not provided, the address is assumed to be the MC address (20h). Implementing this field is
required when the

get chassis capabilities
command is implemented by an MC, and whenever the chassis bridge function is
implemented at an address other than 20h.

Get chassis status command
This command is available to ChMC and MC.

This command returns information regarding the high-level status of the system chassis and main power
subsystem.

Table 63: Get chassis status command response data

Response
data byte
number

Data field

1 Completion code

1 In some installations, the chassis’ main power feed may be DC based. For example, -48V. In this case, the
power restore policy for AC/mains refers to the loss and restoration of the DC main power feed.

2 Current power state

[7] Reserved

[6:5] Power restore policy
1

Table Continued

140  Get chassis status command



00b = Chassis stays powered off after AC/mains returns

01b = After AC returns, power is restored to the state that was in effect when
AC/mains was lost

10b = Chassis always powers up after AC/mains returns

11b = Unknown

[4] Power control fault

1b = Controller attempted to turn system power on or off, but system did
not enter desired state.

[3] Power fault

1b = Fault detected in main power subsystem.

[2] 1b = Interlock (chassis is presently shut down because a chassis panel
interlock switch is active). (IPMI 1.5).

[1] Power overload

1b = System shutdown because of power overload condition

[0] Power is on

1b = System power is on

0b = System power is off (soft-off S4/S5 or mechanical off)

3 Last power event

[7:5] Reserved

[4] 1b = Last Power is on state was entered via IPMI command

[3] 1b = Last power down caused by power fault

[2] 1b = Last power down caused by a power interlock being activated

[1] 1b = Last power down caused by a power overload

[0] 1b = AC failed

4 Miscellaneous chassis state

[7] Reserved

[6] 1b = Chassis identify command and state information supported (optional)

Table Continued

Command specification 141



0b = Chassis identify command support unspecified via this command.
(The

get command support
command, if implemented, would still indicate support for the

chassis identify
command).

[5:4] Chassis identify state. Mandatory when bit [6] = 1b, reserved (return as 00b)
otherwise. Returns the present chassis identify state. See Chassis identify
command on page 144

.

[3] 1b = Cooling/fan fault detected

[2] 1b = Drive fault

[1] 1b = Front panel lockout active (power off and reset via chassis push-
buttons disabled.)

[0] 1b = Chassis intrusion active

(5) Front panel button capabilities and disable/enable status (optional). Button actually refers to
the ability for the local user to be able to perform the specified functions via a pushbutton,
switch, or other front panel control built into the system chassis.

[7] 1b = Standby (sleep) button disable allowed

[6] 1b = Diagnostic Interrupt button disable allowed

[5] 1b = Reset button disable allowed

[4] 1b = Power off button disable allowed (in the case there is a single
combined power/standby (sleep) button, disabling power off also
disables sleep requests via that button).

[3] 1b = Standby (sleep) button disabled

[2] 1b = Diagnostic Interrupt button disabled

[1] 1b = Reset button disabled

[0] 1b = Power off button disabled (in the case there is a single combined
power/standby (sleep) button, then this indicates that sleep requests
via that button are also disabled).

1 In some installations, the chassis’ main power feed may be DC based. For example, -48V. In this case, the
power restore policy for AC/mains refers to the loss and restoration of the DC main power feed.

Chassis control command
This command is available to the MC.

This command provides a mechanism for providing power up, power down, and reset control.

142  Chassis control command



Table 64: Chassis control command request and response data

Request data
byte number

Data field

1 [7:4] Reserved

[3:0] Chassis control
1

0h = Power down. Force system into soft off (S4/S45) state. This is for
emergency management power down actions. The command does
not initiate a clean shut-down of the operating system before
powering down the system.

1h = Power up.

2h = Power cycle (optional). This command provides a power off interval of
at least 1 second following the de-assertion of the system’s power
good status from the main power subsystem. It is recommended that
no action occur if system power is off (S4/S5) when this action is
selected, and that a D5h

Request parameter(s) not supported in present
state.
error completion code be returned. Some implementations may cause
a system power up if a power cycle operation is selected when
system power is down. For consistency of operation, it is
recommended that SMS first check the system power state before
issuing a power cycle, and only issue the command if the system
power is on or in a lower sleep state than S4/S5.

3h = Hard reset. In some implementations, the MC may not know whether
a reset causes any particular effect and pulses the system reset
signal regardless of power state. If the implementation can tell that no
action occurs if a reset is delivered in a given power state, then it is
recommended (but still optional) that a D5h

Request parameter(s) not supported in present
state.
error completion code be returned.

4h = Pulse diagnostic interrupt (optional). Pulse a version of a diagnostic
interrupt that goes directly to the processor(s). This is typically used to
cause the operating system to do a diagnostic dump (OS dependent).
The interrupt is commonly an NMI on IA-32 systems and an INIT on
Intel® Itanium™ processor based systems.

5h = Initiate a soft-shutdown of OS via ACPI by emulating a fatal
overtemperature (optional).

All other = Reserved

Table Continued

Command specification 143



Response
data byte
number

Data field

1 Completion code
2

1 The command can also be used for compute blades or compute partition applications where the blades or
partitions entities are emulating independent computer systems that implement IPMI. In these applications,
the chassis power control aspects of the command are not required to be supported. Individual blades or
computer partitions can elect to either not support the power on/off functions, can use them for power
control of the blade/partition independent of the containing chassis, or may map them into a power control
scheme for the overall chassis. For example, a scheme where chassis power will go off only after all blades
within a chassis have been commanded into the power off state.

2 The implementation is allowed to return the completion code before performing the selected control action if
necessary.

Chassis identify command
This command is available to the MC.

This command causes the chassis to physically identify itself by a mechanism chosen by the system
implementation; such as turning on blinking user-visible lights or emitting beeps via a speaker, LCD panel,
etc. Unless the optional force identify on capability is supported and used, the chassis identify
command automatically times out and deasserts the indication after a configurable time-out. Software must
periodically resend the command to keep the identify condition asserted. This restarts the timeout.

Table 65: Chassis identify command request and response data

Request data
byte number

Data field

1
1

[7:0] Identify interval in seconds (optional). 1-based. Timing accuracy = -0/+20%. If this
byte is not provided, the default timeout shall be 15 seconds -0/+20%. This byte
can be overridden by optional byte 2.

00h = Turn off identify

2
2

Force identify on (optional). This field enables software to command the identify to be on
indefinitely. The MC implementation should return an error completion code if this byte is
not supported.

[7:1] Reserved

[0] 1b = Turn on identify indefinitely. This overrides the values in byte 1.

0b = Identify state driven according to byte 1.

Response
data byte
number

Data field

1 Completion code
1 This parameter byte is optionally present. If not provided, the dhassis identify can be used to turn on the

identify indication for the default timeout interval, but cannot be used to turn the indication off.

144  Chassis identify command



2 This parameter byte is optionally present. If provided, it is highly recommended that the chassis provides a
local manual mechanism that enables a user or service personnel to turn off Identify. If a local manual
mechanism is not provided, AC removal (MC reset) should remove the indication.

Table Continued

Set power restore policy command
This command is available to the MC.

This command can be used to configure the power restore policy. This configuration parameter is kept in non-
volatile storage. The power restore policy determines how the system or chassis behaves when AC power
returns after an AC power loss. The get chassis status command returns the power restore policy
setting.

Table 66: Set power restore policy command request and response data

Request data
byte number

Data field

1 [7:3] Reserved

[2:0] Power restore policy
1

011b = No change (just get present policy support)

010b = Chassis always powers up after AC/mains is applied or returns

001b = After AC/mains is applied or returns, power is restored to the state
that was in effect when AC/mains was removed or lost

000b = Chassis always stays powered off after AC/mains is applied, power
push button or command required to power on system

All other = Reserved

Response
data byte
number

Data field

1 Completion code. A non-zero completion code should be returned if an attempt is made to
set a policy option that is not supported.

2 Power restore policy support (bitfield)

[7:3] Reserved

[2] 1b = Chassis supports always powering up after AC/mains returns

[1] 1b = Chassis supports restoring power to the state that was in effect when
AC/mains was lost

[0] 1b = Chassis supports staying powered off after AC/mains returns
1 In some installations, the chassis’ main power feed may be DC based. For example, -48V. In this case, the

power restore policy for AC/mains refers to the loss and restoration of the DC main power feed.

Set power restore policy command 145



Get system restart cause command
This command returns information about what action last caused the system to restart. BIOS can use this
command in conjunction with the System Boot Options as additional information in determining whether to
perform the requested boot operation.

Table 67: Get system restart cause command request and response data

Request data
byte number

Data field

- - -

Response
data byte
number

Data field

1 Completion code.

2 Restart cause (bitfield)

[7:4] Reserved

[3:0] 0h Unknown (system start/restart detected, but cause unknown)

1h Chassis Control command

2h Reset via pushbutton

3h Power-up via power pushbutton

4h Watchdog expiration (see watchdog flags)

5h OEM

6h Automatic power-up on AC being applied due to always restore power
restore policy

7h Automatic power-up on AC being applied due to restore previous

power state power restore policy

8h Reset via PEF

9h Power-cycle via PEF

Ah Soft reset (e.g. CTRL-ALT-DEL)

Bh Power-up via RTC (system real time clock) wakeup

3

Set system boot options command
This command is available to the MC.

146  Get system restart cause command



This command is used to set parameters that direct the system boot following a system power up or reset.
The boot flags only apply for one system restart. It is the responsibility of the system BIOS to read these
settings from the MC and then clear the boot flags.

It is possible that a remote console application could set the boot option flags and then be terminated either
accidentally or intentionally. In this circumstance, it is possible that a user-initiated system restart could occur
hours or even days later. If the boot options were used without examining the reset cause, this could cause an
unexpected boot sequence. Thus, the MC automatically clears a boot flags valid bit if a system restart is not
initiated by a chassis control command within 60 seconds +/- 10% of the valid flag being set. The MC
also clears the bit on any system resets or power cycles that are not triggered by a system control
command. This default behavior can be temporarily overridden using the MC boot flag valid bit clearing
parameter.

Table 68: Set system boot options command request and response data

Request data
byte number

Data field

1 Parameter valid

[7] 1b = Mark parameter invalid/locked

0b = Mark parameter valid/unlocked

[6:0] Boot option parameter selector

(2:N) Boot option parameter data. Passing 0-bytes of parameter data allows the parameter valid
bit to be changed without affecting the present parameter setting.

Response
data byte
number

Data field

1 Completion code. Generic plus the command-specific completion codes:

80h = Parameter not supported.

81h = Attempt to set the set in progress value (in parameter #0) when not in the set
complete state. This completion code provides a way to recognize that another
party has already claimed the parameters.

82h = Attempt to write read-only parameter.

Get system boot options command
This command is available to the MC.

This command is used to retrieve the boot options set by the set system boot options command.

Table 69: Get system boot options command request and response data

Request data
byte number

Data field

1 Parameter selector

Table Continued

Get system boot options command 147



[7] Reserved

[6:0] Boot option parameter selector

2 [7:0] - Set selector. Selects a particular block or set of parameters under the given
parameter selector. Write as 00h if parameter does not use a set selector.

3 [7:0] - Block selector. Selects a particular block within a set of parameters. Write as 00h if
parameter does not use a block selector.

NOTE:

There are no IPMI-specified boot options parameters that use the block selector.
However, this field is provided for consistency with other configuration commands
and as a placeholder for future extension of the IPMI specification.

Response
data byte
number

Data field

1 Completion code. Generic plus the command-specific completion code: 80h = parameter
not supported.

2 [7:4] Reserved

[3:0] Parameter version. 1h for this specification unless otherwise specified.

3 Parameter valid

[7] 1b = Parameter marked invalid / locked

0b = Parameter marked valid / unlocked

[6:0] Boot option parameter selector

4:N Configuration parameter data, per the following Boot option parameters table.

. If the rollback feature is implemented, the MC makes a copy of the existing parameters
when the set in progress state becomes asserted (see the set in progress parameter #0).
While the set in progress state is active, the MC returns data from this copy of the
parameters, plus any uncommitted changes that were made to the data. Otherwise, the MC
returns parameter data from non-volatile storage.

148 Command specification



Table 70: Boot option parameters

Parameter # Parameter data (non-volatile unless otherwise noted)

Set in progress
(volatile)

0 Data 1 - This parameter is used to indicate when any of the following
parameters are being updated, and when the updates are completed.
The bit is primarily provided to alert software that some other software
or utility is in the process of making changes to the data.

An implementation can also elect to provide a rollback feature that uses
this information to decide whether to roll back to the previous
configuration information, or to accept the configuration change.

If used, the roll back restores all parameters to their previous state.
Otherwise, the change takes effect when the write occurs.

[7:2] Reserved

[1:0] 00b = Set complete. If a system reset or transition to
powered down state occurs while set in
progress is active, the MC goes to the set
complete state. If rollback is implemented,
going directly to set complete without first
doing a commit write causes any pending
write data to be discarded.

01b = Set in progress. This flag indicates that some
utility or other software is presently doing
writes to parameter data. It is a notification
flag only, it is not a resource lock. The MC
does not provide any interlock mechanism
that would prevent other software from writing
parameter data.

11b = Reserved

MC boot flag valid bit
clearing (semi-volatile)

3 Data 1 — MC boot flag valid bit clearing. Default = 00000b.

[7:5] Reserved

[4] 1b = Do not clear valid bit on reset/power cycle
caused by PEF.

[3] 1b = Do not automatically clear boot flag valid bit if

chassis control
command is not received within 60-second
timeout (countdown restarts when a

chassis control
command is received).

[2] 1b = Do not clear valid bit on reset/power cycle
caused by watchdog timeout.

Table Continued

Command specification 149



Parameter # Parameter data (non-volatile unless otherwise noted)

[1] 1b = Do not clear valid bit on push button reset/
soft-reset (such as “Ctrl-Alt-Del”).

[0] 1b = Do not clear valid bit on power up via power
push button or wake event.

Boot info acknowledge
(semi-volatile)1

4 These flags are used to allow individual parties to track whether they
have already seen and handled the boot information. Applications that
deal with boot information should check the boot information and clear
their corresponding bit after consuming the boot options data.

Data 1: Write mask (write-only). This field is returned as 00h when read.
This is to eliminate the need for the MC to provide storage for the write
mask field.

[7] 1b = Enable write to bit 7 of data field

[6] 1b = Enable write to bit 6 of data field

[5] 1b = Enable write to bit 5 of data field

[4] 1b = Enable write to bit 4 of data field

[3] 1b = Enable write to bit 3 of data field

[2] 1b = Enable write to bit 2 of data field

[1] 1b = Enable write to bit 1 of data field

[0] 1b = Enable write to bit 0 of data field

Data 2: Boot initiator acknowledge data. The boot initiator should
typically write FFh to this parameter before initiating the boot. The boot
initiator may write 0’s if it wants to intentionally direct a given party to
ignore the boot info. This field is automatically initialized to 00h when
the management controller is first powered up or reset.

[7] Reserved. Write as 1b. Ignore on read.

[6] Reserved. Write as 1b. Ignore on read.

[5] Reserved. Write as 1b. Ignore on read.

[4] 0b = OEM has handled boot information.

[3] 0b = SMS has handled boot information.

[2] 0b = OS/service partition has handled boot
information.

Table Continued

150 Command specification



Parameter # Parameter data (non-volatile unless otherwise noted)

[1] 0b = OS loader has handled boot information.

[0] 0b = BIOS/POST has handled boot information.

Boot flags (semi-
volatile)1

5 Data 1

[7] 1b = Boot flags valid. The bit should be set to
indicate that valid flag data is present. This bit
may be automatically cleared based on the
boot flag valid bit clearing parameter.

[6] 0b = Options apply to next boot only.

1b = Options requested to be persistent for all
future boots (such as requests for BIOS to
change its boot settings).

NOTE:

In order to set this bit remotely (over a
session), the user must execute the
set system boot options
command at Admin privilege level. In
order to retain backward compatibility,
this bit is automatically cleared by the
MC whenever the boot flags valid bit is
clear (0b). This is to avoid the
possibility that this bit would already be
set when an older application changes
other options. Thus, this bit and the
boot flags valid bit must be set
simultaneously.

[5] BIOS boot type (for BIOS that support both legacy and EFI
boots).

0b = PC compatible boot (legacy).

1b = Extensible firmware interface boot (EFI).

[4:0] Reserved

Table Continued

Command specification 151



Parameter # Parameter data (non-volatile unless otherwise noted)

BIOS support for the following flags is optional. If a given flag is
supported, it must cause the specified function to occur in order for the
implementation to be considered conformant with this specification.

The following parameters represent temporary overrides of the BIOS
default settings when data1[6] has value 0b (one-boot), and represent
requests to persistently change the BIOS boot behavior when data1[6]
has value 1b (persistent). BIOS should only use the following flags
when the boot flags valid bit (data1[7]) is set (1b).

If data[6] = 0b (one-boot) a value of 0 for a given data2 parameter
indicates that BIOS should use its default configuration for the given
option (no override) - a non-zero value requests BIOS to enter the
requested state.

If data[6] = 1b (persistent) BIOS is requested to change its setting

according to the flag. This only applies to parameters labeled 

Data 2

[7] 1b = CMOS clear.

[6] 1b = Lock keyboard.

[5:2] Boot device selector

0000b = No override

0001b = Force PXE

0010b = Force boot from default hard-drive

1100-1110
b

Reserved

[1] 1b = Screen blank.

[0] 1b =

Data 3

[7] 1b =

[6:5] Firmware (BIOS) verbosity (directs what appears on POST
display).

[4]

Table Continued

152 Command specification



Parameter # Parameter data (non-volatile unless otherwise noted)

[3] 1b =

[2] 1b =

[1:0]

OEM parameters
(optional). Non-volatile
or volatile as specified
by OEM.

96:127 This range is available for special OEM configuration parameters. The
OEM is identified according to the manufacturer ID field returned by the

get device ID
command.

1 Semi-volatile means that the parameter is kept across system power cycles, resets, system power on/off,
and sleep state changes, but is not preserved if the management controller loses standby power or is cold
reset. Parameters designated as semi-volatile are initialized to 0’s upon controller power up or hard reset,
unless otherwise specified.

Get POH counter command
This command is available to the MC.

IPMI provides a specification for an optional, POH counter. The management controller automatically
increments non-volatile storage at the specified rate whenever the system is powered up. It is recommended
that this command be implemented in the MC to provide a standardized location for this function.

The definition of powered up used in this document indicates that the power-on hours accumulate whenever
the system is in the operational (S0) state. An implementation may elect to increment power-on hours in the
S1 and S2 states as well.

Clear or set commands are not specified for this counter because the counter is most typically used for
warranty tracking or replacement purposes.

Table 71: Get POH counter command response data

Response data
byte number

Data field

1 Completion code

2 Minutes per count

3:6 Counter reading. LS byte first.

When the system is powered down between counts, the counter either picks up incrementing at the offset at
which the power down occurred, or starts counting at 0 minutes from the last counter reading, depending on
the choice of the implementer. In any case, the time does not get rounded up to the next count as a result of
powering down between counts.

Event commands
The sensor/event network function is used for device functionality related to the transmission, reception, and
handling of event messages and platform sensors. An event message is actually a sensor/event message

Get POH counter command 153



with a command byte of ‘02h’. The request is also referred to as an event request message, while the
corresponding response is referred to as an event response message.

Set event receiver command
This command tells a controller where to send event messages. The slave address and LUN of the event
receiver must be provided. A value FFh for the event receiver slave address disables event message
generation entirely. This command is only applicable to management controllers that act as IPMB event
generators.

A device that receives a set event receiver command re-arms event generation for all its internal
sensors. This means internally re-scanning for the event condition and updating the event status based on the
result. This causes devices that have any pre-existing event conditions to transmit new event messages for
those events.

A reading/state unavailable (formerly initial update in progress) bit is provided with the get sensor
reading and get sensor event status commands to help software avoid getting incorrect event status
due to a re-arm. For example, a controller only scans for an event condition once every four seconds.
Software that accessed the event status using the get sensor reading command could see the wrong
status for up to four seconds before the event status would be correctly updated. A controller that has slow
updates must implement the reading/state unavailable bit, and should not generate event messages until the
update has completed. Software should ignore the event status bits while the reading/state unavailable bit is
set.

Table 72: Set event receiver command request and response data

Request data
byte number

Data field

1 Event receiver slave address. 0FFh disables event message generation. Otherwise:

• [7:1] - IPMB (I
2

C) slave address
• [0] - always 0b when [7:1] holds I

2

C slave address

2 • [7:2] - reserved
• [1:0] - event receiver LUN

Response data
byte number

Data field

1 Completion code

Get event receiver command
This command is used to retrieve the present setting for the event receiver slave address and LUN. This
command is only applicable to management controllers that act as IPMB event generators.

154  Set event receiver command



Table 73: Get event receiver command response data

Response data
byte number

Data field

1 Completion code

2 Event receiver slave address. 0FFh indicates event message generation has been
disabled. Otherwise:

• [7:1] - IPMB (I
2

C) slave address
• [0] - always 0b when [7:1] holds I

2

C slave address

3 • [7:2] - reserved
• [1:0] - event receiver LUN

Platform event message command
This command is a request for the MC to process the event data that the command contains. Typically, the
data is logged to the SEL. Depending on the implementation, the data may also go to the event message
buffer and processed by PEF.

Table 74: Platform event message command request and response data

IPMB messaging (IPMB, LAN, Serial/Modem, PCI
Mgmt. Bus)

System interface

Request
data byte
number

Data field Request data
byte number

Data field

— Generator ID (RqSA, RqLUN) 1 Generator ID

1 EvMRev 2 EvMRev

2 Sensor type 3 Sensor type

3 Sensor # 4 Sensor #

4 Event Dir | Event type 5 Event Dir | Event type

5 Event data 1 6 Event data 1

6 Event data 2 7 Event data 2

7 Event data 3 8 Event data 3

Table Continued

Platform event message command 155



IPMB messaging (IPMB, LAN, Serial/Modem, PCI
Mgmt. Bus)

System interface

Response
data byte
number

Response
data byte
number

1 Completion code 1 Completion code

The generator ID field is a required element of an event request message. For IPMB messages, this field is
equated to the requester’s slave address and LUN fields. Thus, the generator ID information is not carried in
the data field of an IPMB request message.

For system side interfaces, do not overlay the generator ID field with the message source address
information. It should be specified as being carried in the data field of the request.

PEF and Alerting commands
The commands in this section are related to Platform Event Filtering (PEF) and Alerting.

Get PEF Capabilities command
This command returns information about the implementation of PEF on the BMC.

Table 75: Get PEF Capabilities command response data

Response
data byte
number

Data field

1 Completion code

2 PEF Version (BCD encoded, LSN first, 51h for this specification.)

Table Continued

156  PEF and Alerting commands



Response
data byte
number

Data field

3 [7]

1b=OEM event record filtering supported

[6]

1b=Reserved

[5]

1b=Diagnostic interrupt

[4]

1b=OEM action

[3]

1b=Power cycle

[2]

1b=Reset

[1]

1b=Power down

[0]

1b=Alert

4 Number of event filter table entries (1 based)

Arm PEF Postpone Timer command
This command is used by software to enable and arm the PEF Postpone Timer. The command can also be
used by software to disable PEF indefinitely during run-time. Once enabled, the timer automatically starts
counting down whenever the last software-processed event Record ID is for a record that is not equal to the
most recent (last) SEL record. The countdown will begin immediately if the Record IDs are already different
when the timer is armed.

In order to keep the PEF Postpone Timer from expiring, software must use the Set Last Processed Event ID
command to update the last software-processed Record ID to match the value for the last SEL record. This
will cause the BMC to stop the timer and rearm it to start counting down from the value that was passed in the
Arm PEF Postpone Timer command.

The Get Last Processed Event ID command can be used to retrieve the present value for the last SEL
record’s

Record ID, the last BMC-processed Record ID, and the last software-processed Record ID.

Arm PEF Postpone Timer command 157



Table 76: Arm PEF Postpone Timer command request data

Request data
byte number

Data field

1 [7:0]

PEF Postpone Timeout, in seconds. 01h is 1 second.

00h

Disable Postpone Timer (PEF will immediately handle events, if enabled). The BMC
automatically disables the timer whenever the system enters a sleep state, is
powered down, or reset.

01h—FDh

Arm timer. Timer will automatically start counting down from given value when the
last-processed event record ID is not equal to the last received event’s record ID.

FEh

Temporary PEF disable. The PEF Postpone timer does not countdown from the
value. The BMC automatically re-enables PEF (if enabled in the PEF configuration
parameters) and sets the PEF Postpone timeout to 00h whenever the system enters
a sleep state, is powered down, or reset. Software can cancel this disable by setting
this parameter to 00h or 01h–FDh.

FFh

Get present countdown value.

Table 77: Arm PEF Postpone Timer command response data

Response
data byte
number

Data field

1 Completion code

2 Present timer countdown value

Set PEF Configuration Parameters Command
This command is used for setting parameters such as PEF enable/disable and for entering the configuration
of the Event Filter table and the Alert Strings.

158  Set PEF Configuration Parameters Command



Table 78: Set PEF Configuration command request data

Request data
byte number

Data field

1 Parameter selector

[7]

Reserved

[6:0]

Parameter selector

2:N Configuration parameter data, per Get PEF Configuration Parameters Command.

Table 79: Set PEF Configuration command response data

Response
data byte
number

Data field

1 Completion Code. Generic plus the following command-specific completion codes:

80h

Parameter not supported.

81h

Attempt to set the ‘set in progress’ value (in parameter #0) when not in the ‘set
complete’ state. (This completion code provides a way to recognize that another party
has already ‘claimed’ the parameters)

82h

Attempt to write read-only parameter

83h

Attempt to read write-only parameter

Get PEF Configuration Parameters Command
This command is used for retrieving the configuration parameters from the Set PEF Configuration command.

Get PEF Configuration Parameters Command 159



Table 80: Get PEF Configuration Parameters command request data

Request data
byte number

Data field

1 Parameter selector

[7]

• 1b=Get parameter revision only.
• 0b=Get parameter

[6:0]

Parameter selector

2 Set selector (00h if parameter does not require a set selector)

3 Block selector (00h if parameter does not require a block number)

Table 81: Get PEF Configuration Parameters command response data

Response
data byte
number

Data field

1 Completion Code. Generic plus the following command-specific completion codes:

80h

Parameter not supported.

2 [7:0]

Parameter revision. Format: MSN = present revision. LSN = oldest revision with which
parameter is backward compatible.

3:N Configuration parameter data, per the following PEF configuration parameters table.

. If the rollback feature is implemented, the BMC makes a copy of the existing parameters
when the ‘set in progress’ state becomes asserted (See the Set in Progress parameter #0).
While the ‘set in progress’ state is active, the BMC will return data from this copy of the
parameters, plus any uncommitted changes that were made to the data. Otherwise, the
BMC returns parameter data from non-volatile storage.

NOTE:

Data bytes 3:N are not returned when the ‘get parameter revision only’ bit is 1b.

160 Command specification



Table 82: PEF configuration parameters

Parameter # Parameter Data

Set In Progress
(volatile)

0 Data 1

This parameter is used to indicate when any of the following
parameters are being updated, and when the updates are completed.
The bit is primarily provided to alert software than some other software
or utility is in the process of making changes to the data.

An implementation can also elect to provide a ‘rollback’ feature that
uses this information to decide whether to ‘roll back’ to the previous
configuration information, or to accept the configuration change.

If used, the roll back shall restore all parameters to their previous state.
Otherwise, the change shall take effect when the write occurs.

[7:2]

Reserved

[1:0]
00b

Set complete. If a system reset or transition to powered down
state occurs while ‘set in progress’ is active, the BMC will go to
the ‘set complete’ state. If rollback is implemented, going directly
to ‘set complete’ without first doing a ‘commit write’ will cause
any pending write data to be discarded.

01b

Set in progress. This flag indicates that some utility or other
software is presently doing writes to parameter data. It is a
notification flag only, it is not a resource lock. The BMC does not
provide any interlock mechanism that would prevent other
software from writing parameter data while.

10b

Commit write (optional). This is only used if a rollback is
implemented. The BMC will save the data that has been written
since the last time the ‘set in progress’ and then go to the ‘set in
progress’ state. An error completion code will be returned if this
option is not supported.

11b

Reserved

Table Continued

Command specification 161



PEF control (non-
volatile)

1 Data 1

[7:4]

Reserved

[3]

PEF Alert Startup Delay disable. (optional)

• 1b = Enable PEF Alert Startup delay
• 0b = Disable PEF startup delay.

[2]

PEF Startup Delay disable. (optional)

An implementation that supports this bit should also provide a
mechanism that allows the user to Disable PEF in case the filter
entries are programmed to cause an ‘infinite loop’ of PEF actions
(such as system resets or power cycles) when the PEF startup
delay is disabled. If this bit is not implemented the PEF startup
delay must always be enabled.

• 1b = Enable PEF startup delay on manual (pushbutton) system
power-ups (from S4/S5) and system resets (including system
resets initiated by PEF).

• 0b = Disable PEF startup delay.

[1]

1b

Enable event messages for PEF actions. If this bit is set, each
action triggered by a filter will generate an event message for the
action. These allow the occurrence of PEF- triggered actions to
be logged (if event logging is enabled). The events are logged
as System Event Sensor 12h, offset 04h. See Table 2, Sensor
Type Codes.) These event messages are also subject to PEF.

0b

Disable event messages for PEF actions.

[0]
1b

Enable PEF.

0b

Disable PEF.

Table Continued

162 Command specification



PEF Action global
control (non-volatile)

2 Data 1

[7:6]

Reserved

[5]

1b = Enable diagnostic interrupt

[4]

1b = Enable OEM action

[3]

1b = Enable power cycle action (No effect if power is already off)

[2]

1b = Enable reset action

[1]

1b = Enable power down action

[0]

1b = Enable Alert action

PEF Startup Delay
(optional, non-volatile)

3 Data 1

Time to delay PEF after a system power-ups (from S4/S5) and resets.
Default = 60 seconds. If this parameter is not provided, the default PEF
Startup Delay must be implemented. Enable/disable of the delay is
configured using the PEF Control parameter, above. If this parameter
is supported, a 00h value can also be used to disable the delay if
necessary.

NOTE:

An implementation that supports this parameter should also
provide a mechanism that allows the user to Disable PEF in
case the filter entries are programmed to cause an ‘infinite loop’
of PEF actions under the situation where this parameter is set to
too short an interval to allow a user to locally disable PEF. An
implementation is allowed to force this parameter to a minimum,
non-zero value.

PEF Startup Delay

[7:0] - PEF Startup Delay in seconds, +/- 10%. 1-based. 00h = no
delay.

Table Continued

Command specification 163



PEF Alert Startup Delay
(optional, non-volatile)

4 Data 1

Time to delay Alerts after system power-ups (from S4/S5) and resets.
Default = platform-specific. 60-seconds typical, though may be longer
on systems that require more startup time before user can take action
to disable PEF. If this parameter is not provided, a default PEF Startup
Delay, appropriate for the platform, must be implemented. Enable/
disable of the delay can also be optionally configured using the PEF
Control parameter, above. An implementation can separately
implement this parameter and/or the enable/disable bit.

PEF Alert Delay

[7:0] - PEF Alert Startup Delay in seconds, +/- 10%. 1-based. 00h = No
delay.

Number of Event Filters

(READ ONLY)

5 Number of event filters supported. 1-based. This parameter does not
need to be supported if Alerting is not supported.

[7:0] - Number of event filter entries. 0 = Alerting not supported.

Event Filter Table (non-
volatile)

6 Data 1 -

Set Selector = Filter number.

[7] - Filter number. 1-based. 00h = Reserved.

Data 2:21 -

Filter data

Event Filter Table Data
1 (non-volatile)

7 This parameter provides an aliased access to the first byte of the event
filter data. This is provided to simplify the act of enabling and disabling
individual filters by avoiding the need to do a read-modify-write of the
entire filter data.

Data 1 -

Set Selector = Filter number

[7:0] - Filter number. 1-based. 00h = Reserved.

Data 2 -

Data byte 1 of event filter data

Number of Alert Policy

Entries

(READ ONLY)

8 Number of alert policy entries supported. 1-based. This parameter
does not need to be supported if Alerting is not supported.

[7] - Reserved

[6:0] - Number of alert policy entries. 0 = alerting not supported.

Alert Policy Table

(non-volatile)

9 Data 1 -

Set Selector = entry number

[7] - Reserved

[6:0] - Alert policy entry number. 1-based. Data 2:4 -

Entry data

Table Continued

164 Command specification



System GUID (non-
volatile)

10 Data 1

Used to fill in the GUID field in a PET Trap.
[7:1]

Reserved

[0]
1b

BMC uses following value in PET Trap.

0b

BMC ignores following value and uses value returned from Get
System GUID command instead.

2:17 -

System GUID

Number of Alert Strings

(READ ONLY)

11 Number of alert strings supported in addition to Alert String 0. 1-based.
This parameter does not need to be supported if Alerting is not
supported.

[7] - Reserved

[6:0] - Number of alert strings.

Table Continued

Command specification 165



Alert String Keys

(volatile) & (non-
volatile) - see
description

12 Sets the keys used to look up Alert String data in PEF. This parameter
does not need to be supported if Alerting is not supported.

Data 1 -

Set Selector = Alert string selector.

[7] - Reserved.

[6:0] - String selector.

• 0 = Selects volatile string parameters
• 01h-7Fh = Non-volatile string selectors

PEF uses the following Event Filter Number and the Alert String Key
fields to look up the string associated with a particular event. String 0 is
a special, volatile string reserved for use by the Alert Immediate
command.

The following two fields are used by PEF to look up a particular Alert
String based on information obtained from the alert policy entry. The
fields should typically be set to 0’s (unspecified) for string selector 0.
PEF will scan the values for string 0 when doing a look up, so the
string

0 values can be set to non-zero values for PEF testing/debug purposes
in order to avoid writes to non-volatile storage.

Data 2 - Event Filter Number

[7] - Reserved.

[6:0] - Filter number. 1-based. 00h = unspecified.

data 3 - Alert String Set

[7] - Reserved

[6:0] -Set number for string. 1-based. 00h = unspecified.

Table Continued

166 Command specification



Table Continued

Alert Strings (volatile) &
(non-volatile) - see
description.

13 Sets the Alert String data. The string data that should be used is
dependent on the Channel and Alert Type. This parameter does not
need to be supported if Alerting is not supported.

For Dial paging, the BMC automatically follows the string with a <CR>
(carriage return) character when sending it to the modem.

For TAP paging the string corresponds to ‘Field 2’, the Pager Message.
Note that while the string accepts 8-bit ASCII data, the TAP
implementation only supports 7-bit ASCII.

The BMC shall automatically zero the 8th bit when transmitting the
string during TAP paging.

String 0 is a special, volatile string reserved for use by the Alert
Immediate command.

Data 1 - Set Selector = string selector.

[7] - Reserved.

[6:0] - String selector.

0 = Selects volatile string

01h-7Fh = Non-volatile string selectors

data 2 -

Block Selector = string block number to set, 1 based. Blocks are 16
bytes.

data 3:N -

String data. Null terminated 8-bit ASCII string. 16-bytes max. per block.

Number of Group
Control Table entries
(READ ONLY)

(Optional. Present if
BMC supports
automatic ICMB Group
Power Control.)

14 Data 1 -

Number of group control table entries. 1-based (4 min, 8 max)

Group Control Table

(Optional, non-volatile.
Present if BMC
supports automatic
ICMB Group Power
Control.)

15 data 1 -

Set Selector = group control table entry selector.

[7] - Reserved.

[6:0] - Group control table entry selector.

data 2 -
[7:6]

Reserved

[5]

Request/Force

Command specification 167



0b

Request control operation. A requested operation will only
complete once the same operation has been requested for all
control groups and all enabled control members for the given
chassis.

1b

Force control operation. A forced operation will occur regardless
of whether the same operation has been requested for all control
groups and all enabled control membership for the given
chassis.

[4]

Immediate/Delayed. Selects whether the BMC requests an
immediate or delayed control operation. Note: whether this
operation is initiated at the time the command is received is
dependent on the request/force bit, see above.
0b

immediate control. BMC sends command that requests an
immediate control operation.

1b

delayed control. BMC sends control command to request a
delayed control operation. This is conditioned by the request/
force bit.

[3:0]

Channel Number (channel number for ICMB that group control
operation is to be delivered over)

Data 3:

Group ID 0 (1-based)
00h

unspecified

FFh

all groups

Data 4:

Member ID 0 (0-based)
[7:5]

Reserved

[4]
0b

Enable member ID check.

1b

Disable member ID check

Table Continued

168 Get PEF Configuration Parameters Command



[3:0]

member ID. ID of this chassis within specified group. (value is
ignored if Group ID 0 = FFh)

data 5:

Group ID 1 (1-based)
00h

unspecified

FFh

all groups

Data 6:

Member ID 1 (0-based)
[7:5]

Reserved

[4]
0b

Enable member ID check.

1b

Disable member ID check 1

[3:0]

Member ID. ID of this chassis within specified group. (value is
ignored if Group ID 0 = FFh)

Data 7:

Group ID 2 (1-based)
00h

Unspecified

FFh

All groups

data 8:

Member ID 2 (0-based)
[7:5]

Reserved

[4]
0b

Enable member ID check.

1b

Disable member ID check 1

Table Continued

Get PEF Configuration Parameters Command 169



[3:0]

Member ID. ID of this chassis within specified group. (value is
ignored if Group ID 0 = FFh)

Data 9:

Group ID 3 (1-based)
00h

Unspecified

FFh

All groups

Data 10:

Member ID 3 (0-based)
[7:5]

Reserved

[4]
0b

Enable member ID check.

1b

Disable member ID check 1

[3:0]

Member ID. ID of this chassis within specified group. (value is
ignored if Group ID 0 = FFh)

Data 11: -

Retries and Operation
[7]

Reserved

[6:4]

Number of times to retry sending the command to perform the
group operation [For ICMB, the BMC broadcasts a Group Chassis
Control command] (1-based)

[3:0]

Operation

0h

Power down. Force system into soft off (S4/S45) state.

This is for ‘emergency’ management power down actions. The
command does not initiate a clean shut-down of the operating
system prior to powering down the system.

1h

Power up.

Table Continued

170 Command specification



2h

Power cycle (optional). This command provides a power off
interval of at least 1 second.

3h

Hard reset. Some systems may accept this option even if the
system is in a state (e.g. powered down) where resets are
unavailable.

4h

Pulse Diagnostic Interrupt. (optional) Pulse a version of a
diagnostic interrupt that goes directly to the processor(s). This is
typically used to cause the operating system to do a diagnostic
dump (OS dependent). The interrupt is commonly an NMI on
IA-32 systems and an INIT on Intel Itanium processor based
systems.

5h

Initiate a soft-shutdown of OS via ACPI by emulating a fatal
overtemperature. (optional)

OEM Parameters
(optional. Non-volatile
or volatile as specified
by OEM)

96:127 This range is available for special OEM configuration parameters. The
OEM is identified according to the Manufacturer ID field returned by the
Get Device ID command.

1 The enable/disable member ID check bit controls whether a control request for the group is checked against
the enabled members or not. If Member ID Check is disabled, then a control request to the groups will
automatically be ‘logged’ for that group. Note, however, that the requested control state must match for all
enabled groups in order for it to take effect.

Set Last Processed Event ID command
This command is used to set the Record ID for the last event that was processed by system software. For test
and debug purposes, it can also be used to set the Record ID for the last event processed by the BMC. The
Last Processed Event ID value is automatically set to FFFFh whenever the SEL is cleared using the Clear
SEL command. If the Delete SEL Entry command is used to either clear the SEL or delete the last event,
software must set the Last Processed event manually by using the Set Last Processed Event ID command.

Of the two Record IDs (software-processed or BMC-processed) PEF uses the Record ID for the most recent
event that was added to the SEL as the indicator of events that have yet to be processed. Both the last BMC-
processed and last software-processed IDs are kept in NV storage.

Set Last Processed Event ID command 171



Table 83: Set Last Processed Event ID command request data

Request data
byte number

Data field

1 [7:1]

Reserved

[0]
0b

Set Record ID for last record processed by software.

1b

Set Record ID for last record processed by BMC.

2:3 Record ID. LS-byte first.

Table 84: Set Last Processed Event ID command response data

Response
data byte
number

Data field

1 Completion Code.

81h = Cannot execute command, SEL erase in progress.

Get Last Processed Event ID command
This command is used to retrieve the Record ID for the last event that was processed by system software and
the BMC.

Table 85: Get Last Processed Event ID command

Response
data byte
number

Data field

1 Completion code. 81h = Cannot execute command, SEL erase in progress.

2:5 Most recent addition timestamp. LS byte first.

6:7 Record ID for last record in SEL. Returns FFFFh if SEL is empty.

8:9 Last SW Processed Event Record ID.

10:11 Last BMC Processed Event Record ID. Returns 0000h when event has been processed
but could not be logged because the SEL is full or logging has been disabled.

Alert Immediate command
This command is used to send an alert to the destination specified by the destination selector. The kind of
alert that will be sent is determined by Destination Type associated with the destination. Alerts that are

172  Get Last Processed Event ID command



initiated via this command are never logged as events. This command is to support utilities or BIOS setup
options that allow the user to test their alerting configuration for a given destination. The command can also
be used by system software as a run-time mechanism to trigger the delivery of an alert.

These alerts are not subject to the Page Blackout intervals, although an alert must complete before the next
Alert Immediate command will be accepted. Alert Immediate commands are also rejected with an error
completion code if an IPMI messaging session or automatic page is already in progress.

Table 86: Alert Immediate command request data

Request data
byte number

Data field

1 Channel number. (This value is required to select which configuration parameters are to be
used to send the Alert.)

[7:4] - reserved

[3:0] - Channel number.

Note: BMC stores the ‘Alert immediate status’ for each channel that can send alert.

2 Destination Selector/ Operation

[7:6] - Operation

00b = Initiate alert

01b = Get Alert Immediate status

10b = Clear Alert Immediate status (sets status to 00h)

11b = reserved

[5:4] - Reserved

[3:0] - destination selector. Selects which alert destination should go to.

0h = use volatile destination info. 1h-Fh = non-volatile destination. Note: If Operation is
‘Get Alert Immediate status’ or ‘Clear Alert Immediate Status’ bits [3:0] are reserved.

3 Alert String Selector

Selects which Alert String, if any, to use with the alert. [7] - 0b = don’t send an Alert String

1b = send Alert String identified by following string selector. [6:0] - string selector.

000_0000b = use volatile Alert String.

01h-7Fh = non-volatile string selector.

The following “Platform Event Parameters” ( bytes 4:11) can be used to fill in the corresponding event data
fields of a Platform Event Trap. When supported, all bytes (4:11) must be supplied. Implementation of this
capability is OPTIONAL but highly recommended for IPMI v2.0 implementations.

4 Generator ID

5 EvMRev

6 Sensor Type

Table Continued

Command specification 173



Request data
byte number

Data field

7 Sensor #

8 Event Dir | Event Type

9 Event Data 1

10 Event Data 2

11 Event Data 3

Table 87: Alert Immediate command response data

Response
data byte
number

Data field

1 Completion Code. Generic codes, plus following command-specific completion codes:

• 81h = Alert Immediate rejected due to alert already in progress.
• 82h = Alert Immediate rejected due to IPMI messaging session active on this channel.
• 83h = Platform Event Parameters (4:11) not supported.

Following byte is only returned when Operation in request is set to “Get Alert Immediate status”

2 Alert Immediate Status

SMS can poll this status to determine present state of the immediate alert.

00h = No status.

Note: A BMC implementation is allowed (but not required) to abort the Alert Immediate
command due to a channel parameter configuration, power, or reset state changes that
occur while the Alert Immediate command is being processed. In which case the BMC will
return the ‘no status’ state.

01h = Alert was Normal End. This will also be returned if one or more attempts failed, but
the last attempt was successful.

02h = “Call Retry” (Dial connection) retries failed.

03h = Alert failed due to timeouts waiting for acknowledge on all retries. FFh = Alert by this
command is in progress. Status pending.

PET Acknowledge command
This message is used to acknowledge a Platform Event Trap (PET) alert. PET alerts are SNMP Traps that are
delivered by LAN or PPP alerting, see [PET] for more info. The PET Acknowledge message is an IPMI
Request Message that is sent by the remote console that has received the trap.

174  PET Acknowledge command



NOTE:

The PET Acknowledge command does not require that an IPMI Messaging session be established with
the BMC. It is in the same class as the Get Channel Authentication Capabilities command. In addition, if
Alerting is enabled and the configuration parameters for the Alert Destination require the PET Alert to be
acknowledged, the BMC will wait for and accept the PET Acknowledge command until the selected retry
interval has expired, even if IPMI Messaging is not available according to the present Access Mode for
the channel. For systems using Serial Port Sharing, the BMC will stay switched to the serial connector
while waiting for the PET Acknowledge.

Table 88: PET Acknowledge command request data

Request data
byte number

Data field

1:2 Sequence Number. Value from the Sequence Number field of the PET. LS- byte first .

3:6 Local Timestamp. Value from the Local Timestamp field of the PET. LS-byte first 1.

7 Event Source type. From corresponding field in the PET.

8 Sensor Device. From corresponding field in the PET.

9 Sensor Number. From corresponding field in the PET.

10:12 Event Data 1:3. From corresponding field in the PET.

1 Completion Code.

1 The sequence number and local timestamp fields in the actual PET on the network are in network byte
order, therefore filling in these values may require software to re-order the bytes as they get them from the
trap.

Table 89: PET Acknowledge command response data

Response
data byte
number

Data field

1 Completion Code.

SEL commands
The SEL is a non-volatile repository for system events and certain system configuration information. The
device that fields these commands is referred to as the SEL device. Event message information is normally
written into the SEL after being received by the event receiver functionality in the event receiver device.

The SEL device commands are structured in such a way that the device can be separated from the event
receiver device. In this instance, the event receiver device must send the appropriate Add sel entry
message directly to the SEL device or pass the equivalent request through an intermediary.

SEL entries have a unique record id field, used for retrieving log entries from the SEL. SEL reading is done in
a random access manner, that is, SEL entries are read in any order as long as the record id is known.

SEL commands 175



NOTE:

SEL record id’s 0000h and FFFFh are reserved for functional use and are not legal id values. Record
ids are handles and are not required to be sequential or consecutive. Applications should not assume
that the SEL record id will follow any particular numeric order.

SEL records are stored as ordered lists. Appending and deleting individual entries does not change the
access order.

SEL device commands
The SEL device can be implemented as a separate device from the event receiver and event generator
devices. If this is done, it is up to the implementer to create the method by which even messages are passed
from the even receiver device to the SEL device.

Get SEL info command
This command return the number of entries in the SEL, SEL command version and the timestamp for the
most recent entry and delete/clear. The most recent addition timestamp field returns the timestamp for the last
add or log operation while the most recent erase field returns the timestamp for the last delete or clear
operation.

These timestamps are independent of timestamps that may be returned by other commands, such as those
returned by the Get sdr repository info command. The timestamp reflects when the most recent SEL
add or erase occurred, and not when the last add or erase occurred on the physical storage device.

For example, the SEL Info most recent addition timestamp would reflect the last time a new event
was added to the SEL. This would be independent of the Info most recent addition time for an SDR
even if the implementation elected to implement the SEL and SDR repository in the same storage device.

Table 90: Get SEL info command request and response data

Request data
byte number

Data field

1 Completion code

• 81h = cannot execute command
• SEL erase in progress

2 SEL version — version number of the SEL command set for this SEL Device.

• 51h
• BCD encoded with bits 7:4 holding the least significant digit of the revision and bits 3:0

holding the most significant bits.

3 Entries LS byte — number of log entries in SEL, LS byte

4 Entries MS byte — number of log entries in SEL, MS byte

5:6 Free space in bytes, LS byte first. FFFFh indicates 65535 or more bytes of free space are
available.

Table Continued

176  SEL device commands



Request data
byte number

Data field

7:10 Most recent addition timestamp.

• LS byte first.
• Returns FFFF_FFFFh if no SEL entries have ever been made or if a component update

or error caused the retained value to be lost.

11:14 Most recent erase timestamp. Last time that one or more entries were deleted from the log.
LS byte first.

15 Operation support

• [7] — Overflow flag. 1=events have been dropped due to lack of space in the SEL.
• [6:4] — reserved. Write as 000
• [3] — 1b =

Delete SEL
command supported

• [2] — 1b = Partial

Add SEL Entry
command supported

• [1] — 1b =

Reserve SEL
command supported

• [0] — 1b =

Get SEL Allocation
information command supported

Reserve SEL command
This command sets the present owner of the SEL as identified by the software id or by the requesters slave
address from the command. The reservation process provides a limited amount of protection on repository
access from the IPMB when records are deleted or incrementally read.

The reserve sel command provides helps prevent the wrong record from being deleted. It includes a
mechanism that prevents the SEL from being cleared when a new event is received in addition to preventing
receipt of incorrect data during incremental reads.

The reserve sel does not guarantee access to the SEL. Essentially, this command prevents requesters
from causing deadlocking.

A reservation id value is returned in response to this command. This value is required in other requests, such
as the clear sel command. This commands will not execute unless the correct reservation id value is
provided.

The reservation id is used in the following manner. Suppose an application wishes to clear the SEL. The
application would first reserve the repository by issuing a reserve sel command. The application would
then check that all SEL entries have been handled prior to issuing the clear sel command.

If a new event is placed in the SEL after records were checked, but before the clear sel command, it is
possible for the event to be lost. However, the addition of a new event to the SEL causes the present
reservation id to be cancelled. This would prevent the clear sel command from executing. If this occurred,
the application would repeat the reserve check clear process until successful.

Command specification 177



Table 91: Reserve SEL command request and respond data

Request data
byte number

Data field

1 Completion code. 81h = cannot execute command, SEL erase in progress

2 Reservation id, LS byte 0000h reserved

3 Reservation id, MS byte

Reservation restricted commands
A requester must issue a reserve sel command prior to issuing any of the following SEL commands. The
reserve sel command is reissued if a reservation is canceled. These commands are rejected if the
requesters reservation is cancelled.

• delete sel entry
command

• clear sel
command

• get sel entry
command, if

get
is from an offset other than 00h.

• partial

add sel entry
command

If the given reservation is canceled, a reservation canceled completion code is returned in response to
the above commands.

The record id associated with a given record can change between successive offset 0 gets to the record id.
That is, the first SEL entry changes if the SEL is cleared and a new event comes in. The device accessing the
SEL verifies that the retrieved record information matches the id information (timestamp, slave address, LUN,
sensor id) of the event record.

Reservation cancellation
The SEL device automatically cancels the present SEL reservation after any of the following events occur:

• A SEL entry is added.
• A SEL entry is deleted, and other record ids change. That is, an implementation is allowed to cancel the

reservation on any SEL entry deletion.
• The SEL is cleared.
• The SEL device is reset by hardware or cold reset command.
• A new

reserve sel
command is received.

178 Command specification



Get SEL entry command
Use this command to retrieve entries from the SEL. The record data field in the response returns the 16 bytes
of data from the SEL event record.

Table 92: Get SEL entry request data

Request data
byte number

Data field

1:2 Reservation id, LS byte first. Only required for partial get. Use 0000h otherwise. 1

3:4 SEL record id, LS byte first.

0000h = get first entry

FFFFh — get last entry

5 Offset into record

6 Bytes to read. FFh means read entire record.

1 The reservation id should be set to 0000h for implementations that don’t implement the reserve sel
command.

Table 93: Get SEL entry response data

Response
data byte
number

Data field

1 Completion code. Return an error completion code if the SEL is empty. 81h = cannot
execute command, SEL erase in progress.

2:3 Next SEL record id, LS byte first (return FFFFh if the record returned is the last record.)
FFFFh is not a valid record id.

4:N Record data, 16 bytes for entire record.

Add SEL entry command
This command enables the BIOS to add records to the system event log. Normally, the SEL device and the
event receiver device are incorporated into the same management controller. In this case, the BIOS or the
system SMI handler adds its own events to the SEL by formatting an event message and transmitting it to the
SEL device instead of using this command.

Records are added after the last record in the SEL. The SEL device adds the timestamp according to the SEL
record type when it creates the record. In some cases, the timestamp bytes in the record data are ignored,
there are still dummy timestamp bytes present in the data.

The record data field is passed in the request consists of all bytes of the SEL event record. The record id field
that is passed in the request is just a placeholder. The record id field that was passed in the request is
overwritten with a record id value that the SEL device generates before the record is stored. Depending on
the record type, the entry may also be automatically timestamped. If the entry is automatically timestamped,
the SEL device also overwrites the four bytes of the records timestamp field.

Command specification 179



NOTE:

The normal mechanism for adding entries to the SEL is by an event request message to the event
receiver device.

Table 94: Add SEL entry request data

Request data
byte number

Data field

1:16 Record data, 16 bytes

Table 95: Add SEL entry response data

Request data
byte number

Data field

1 Completion code. Generic, plus following command specific:

80h = operation not supported for this record type

81h = cannot execute command, SEL erase in progress

2:3 Record id for added record, LS byte first.

Clear SEL
This command erases all contents of the System Event Log. Since this process may take several seconds,
based on the type of storage device, the command also provides a means for obtaining the status of the
erasure.

Table 96: Clear SEL entry request data

Request data
byte number

Data field

1:2 Reservation ID, LS Byte first.1

3 ‘C’ (43h)

4 ‘L’ (4Ch)

5 ‘R’ (52h)

6 AAh = initiate erase.

00h = get erasure status.

1 The reservation ID should be set to 0000h for implementations that don’t implement the Reserve SEL
command.

180  Clear SEL



Table 97: Clear SEL entry response data

Request data
byte number

Data field

1 Completion Code

2 Erasure progress.

[7:4] - reserved

[3:0] - erasure progress

• 0h = erasure in progress.
• 1h = erase completed.

SEL record type ranges

Table 98: SEL record type ranges

Record ranges Description

00h — BFh This range is reserved for standard SEL record types. Records are automatically
timestamped unless otherwise indicated.

C0h — DFh This range is reserved for timestamped OEM SEL records. These records are
automatically timestamped by the SEL device.

E0h — FFh This range is reserved for non-timestamped OEM SEL records. The SEL device
does not automatically timestamp these records. The four bytes passed in the
byte locations for the timestamp are directly entered into the SEL.

Get SEL time command
This command returns the time from the SEL device. This time is used by the SEL device for event
timestampting.

Table 99: Get SEL time command request and respond data

Response data
byte number

Data field

1 Completion code

2:5 Present timestamp clock reading. LS byte first.

Request data
byte number

Data field

1:4 Time in four byte format. LS byte first.

Set SEL time command
This command initializes the time in the SEL device. This time is used by the SEL device for event
timestamping.

SEL record type ranges 181



Table 100: Set SEL time command response data

Response data
byte number

Data field

1 Completion code.

SDR repository device commands
The following sections describe the commands that an SDR repository device provides for accessing the SDR
repository. The commands are designed to simplify the SDR repository device’s implementation by pushing
back intelligence to higher-level software where possible. The SDR repository device is not intended to be a
database engine. Thus, the SDR access commands do not include automatic search functions. It is
recommended that an application read the SDR repository into a RAM buffer and work from that copy
(keeping track of the SDR timestamp to check for possible changes to the SDR repository). The general
procedure for reading SDRs from the SDR repository is described under the get sdr command.

As with event messages, the commands are designed so that the SDR repository device is isolated and does
not need to know the content and format of the SDR records themselves.

SDR record IDs
In order to generalize SDR access, sensor data records are accessed using a record ID number. There are a
fixed number of possible record IDs for a given implementation of the SDR repository. The most common
implementation of record IDs is as a value that translates directly to an index or offset into the SDR repository.
However, it is also possible for an implementation to provide a level of indirection, and implement record IDs
as handles to the SDRs.

Record ID values may be recycled so that the record ID of a previously deleted SDR can be used as the
record ID for a new SDR. The requirement is that, at any given time, the record IDs are unique for all SDRs in
the repository.

Record IDs can be reassigned by the SDR repository device as needed when records are added or deleted.
An application that uses a record ID to directly access a record should always verify that the retrieved record
information matches up with the ID information (slave address, LUN, sensor ID, and so on) of the desired
sensor. An application that finds that the SDR at a given record ID has moved needs to re-enumerate the
SDRs by listing them out using a series of get sdr commands. It is not necessary to read out the full record
data to see if the record ID for a particular record has changed. Software can determine whether a given
record has been given a different record ID by examining just the SDR’s header and record key bytes.

Get SDR repository info command
This command is available to the MC.

At the zone level, remember to issue the SDR repository version of the command. At any other zone, use
the device SDR version of the command.

This command returns the SDR command version for the SDR repository. It also returns a timestamp for
when the last add, delete, or clear occurred. The most recent addition timestamp field returns the timestamp
for the last addition operation, while the most recent erase field returns the timestamp for the last delete or
clear operation.

These timestamps are independent of timestamps that may be returned by other commands, such as those
returned by the get SEL info command. The timestamp reflects when the most recent SDR repository add
or erase occurred, not when the last add or erase occurred on the physical storage device.

For example, the SDR repository info most recent addition timestamp would reflect the last time a new record
was added to the SDR repository. The SDR repository’s most recent addition timestamp is always

182  SDR repository device commands



independent of the most recent addition time for the SEL - even if the SEL and SDR repository are
implemented in the same physical storage device.

Table 101: Get SDR repository info command response data

Response data
byte number

Data field

1 Completion code

2 SDR version - version number of the SDR command set for the SDR device. 51h for
this specification. (BCD encoded with bits 7:4 holding the least significant digit of the
revision and bits 3:0 holding the most significant bits.)

3 Record count LS byte - number of records in the SDR repository.

4 Record count MS Byte - number of records in the SDR repository.

5:6 Free space in bytes, LS Byte first. 0000h indicates full, FFFEh indicates 64KB-2 or
more available. FFFFh indicates unspecified.

7:10 Most recent addition timestamp. LS byte first.

11:14 Most recent erase (delete or clear) timestamp. LS byte first.

15 Operation support

[7] Overflow flag. 1=SDR could not be written due to lack of space in the
SDR repository.

[6:5] 00b = Modal/non-modal SDR repository update operation
unspecified.

01b = Non-modal SDR repository update operation supported.

10b = Modal SDR repository update operation supported.

11b = Both modal and non-modal SDR repository update
supported.

[4] Reserved. Write as 0b.

[3] 1b= Delete SDR
command supported.

[2] 1b= Partial Add SDR command supported.

[1] 1b= Reserve SDR repository
command supported.

[0] 1b= Get SDR repository allocation information
command supported.

Command specification 183



Get SDR repository allocation info command
This command is available to the MC.

This command returns the number of possible allocation units, the amount of usable free space (in allocation
units), the allocation unit size (in bytes), and the size of the largest contiguous free region (in allocation units).
The allocation unit size is the number of bytes in which storage is allocated. For example, if a 20-byte record
is to be added, and the SDR repository has a 16-byte allocation unit size, then the record would take up 32-
bytes of storage.

The SDR repository implementation, at a minimum, provides an allocation unit size of 16 bytes or more and a
maximum record size supporting a record of 64 bytes or more. Software should assume an allocation unit
size of 16 bytes if this command is not implemented.

Table 102: Get SDR repository allocation info command response data

Response data byte
number

Data field

1 Completion code

2 Number of possible allocation units, LS byte.

3 Number of possible allocation units, MS byte. This number indicates whether the
total number of possible allocation units is equal to or less than the log size divided
by the allocation unit size. 0000h indicates unspecified.

4 Allocation unit size in bytes. 0000h indicates unspecified.

5

6 Number of free allocation units, LS byte.

7 Number of free allocation units, MS byte.

8 Largest free block in allocation units, LS byte.

9 Largest free block in allocation units, MS byte.

10 Maximum record size in allocation units.

Reserve SDR repository command
This command is available to the MC.

This command is used to set the present owner of the repository, as identified by the software ID or by the
requester’s slave address from the command. The reservation process provides a limited amount of
protection on repository access from the IPMB when records are being deleted or incrementally read.

The reserve SDR repository command is provided to help prevent deleting the wrong record when
doing deletes, and to prevent receiving incorrect data when doing incremental reads. It does not guarantee
access to the SDR repository so that a pair of requesters could vie for access to the SDR that they alternately
cancel the reservation that is held by the other - effectively deadlocking each other.

A reservation ID value is returned in response to this command which is required in other requests, such as
the delete SDR command. These commands do not execute unless the correct reservation ID value is
provided.

184  Get SDR repository allocation info command



The reservation ID is used in the following manner. Suppose an application wishes to delete a particular
record. The application would first reserve the repository by issuing a reserve SDR repository
command. The application reads the header and key information from the record to verify that it has the
correct record ID for the record. Assuming this is correct, the application issues a delete SDR command
using the reservation ID and record ID as parameters.

If an event had occurred that changed the record IDs after the header and key information was read but
before the delete SDR command, the delete SDR command could be issued with the record ID for the
wrong record. However, events that change record IDs for any existing records cause the present reservation
ID to be canceled. This prevents software from using an out-of-date record ID to access a record. For
example, it would prevent the delete SDR command from executing and deleting the wrong record in case a
given record ID was reassigned to a different record.

Table 103: Reserve SDR repository command response data

Response data byte
number

Data field

1 Completion code

2 Reservation ID, LS byte.

3 Reservation ID, MS byte.

Reservation restricted commands
A requester must issue a reserve SDR repository command before issuing any of the following SDR
repository commands. This command only needs to be reissued if the reservation is canceled. The following
commands are rejected if the requester’s reservation has been canceled.

• Delete SDR command
• Clear SDR Repository command
• Get SDR command (if a partial read)

If the given reservation has been canceled, a reservation canceled completion code is returned in response to
the above commands. See Reservation cancellation on page 185

Since record IDs could change between offset 0 “gets” of a given record, it is the responsibility of the device
accessing the repository to verify that the retrieved record information matches up with the ID information
(slave address, LUN, sensor ID, and so on) of the desired sensor.

Reservation cancellation
The SDR repository device automatically cancels the present SDR repository reservation after any of the
following events occur:

• An SDR record is added using the

add SDR
command so that other record IDs change. As a simplification, an implementation is allowed to cancel the
reservation on any SDR record add.

• An SDR record is deleted so that other record IDs change. As a simplification, an implementation is
allowed to cancel the reservation on any SDR record deletion.

• The SDR repository is cleared.
• The SDR repository device is reset (via hardware or

cold reset

Command specification 185



command).
• A new

reserve SDR repository
command is received.

An error completion code is returned if an attempt is made to execute a command that requires a reservation
ID, but the reservation ID used is not valid or current.

Get SDR command
This command is available to the MC.

This command returns the sensor record specified by record ID. The command also accepts a byte range
specification that allows just a selected portion of the record to be retrieved (incremental read). The requester
must first reserve the SDR repository using the reserve SDR repository command in order for an
incremental read to an offset other than 0000h to be accepted. (It is also recommended that an application
use the get SDR repository info command to verify the version of the SDR repository before it sends
any other SDR repository commands. This is important since the SDR repository command format and
operation can change between versions).

If the record ID is specified as 0000h, this command returns the record header for the first SDR in the
repository. FFFFh specifies that the last SDR in the repository should be listed. If the record ID is non-zero,
the command returns the information from the matching record, and the record ID for the next SDR in the
repository.

An application that wishes to retrieve the full set of SDR records must first issue the get SDR command
starting with 0000h as the record ID to get the first record. The next record ID is extracted from the response
and this is then used as the record ID in a get SDR request to get the next record. This is repeated until the
last record ID value (FFFFh) is returned in the next record ID field of the response.

A partial read from offset 0000h into the record can be used to extract the header and associated key fields
for the specified sensor data record in the SDR repository. An application can use the command in this
manner to get a list of what records are in the SDR and to identify the instances of each type. It can also be
used to search for a particular sensor record.

NOTE:

To support future extensions, applications should check the SDR version byte before interpreting any of
the data that follows.

The application issuing get SDR commands with a non-zero value for the offset into the record field must first
reserve the SDR repository by issuing a reserve SDR repository command.

If you issue a get SDR command (storage 23h) with a bytes to read size of FFh (meaning read entire record)
this will cause an error in most cases, since SDRs are bigger than the buffer sizes for the typical system
interface implementation. The controller therefore returns an error completion code if the number of record
bytes exceeds the maximum transfer length for the interface. The completion code CAh indicates that the
number of requested bytes cannot be returned. Returning this code is recommended, although a controller
could also return an FFh completion code. In either case, the algorithm for handling this situation is to default
to using partial reads if the read entire record operation fails (that is, if you get a non-zero completion code).

186  Get SDR command



Table 104: Get SDR command request and response data

Request data
byte number

Data field

1 Reservation ID, LS byte. Only required for partial reads with a non-zero offset into record
field. Use 0000h for the reservation ID otherwise.

2 Reservation ID, MS byte.

3 Record ID of record being requested, LS byte.

4 Record ID of record being requested, MS byte.

5 Offset into record.

6 Bytes to read. FFh means read entire record.

Response
data byte
number

Data field

1 Completion code.

2 Record ID for next record, LS byte.

3 Record ID for next record, MS byte.

4:3+N Record data.

Add SDR command
This command is available to the MC.

This command adds the specified sensor record to the SDR repository and returns its record ID. The data
passed in the request must contain the SDR data in its entirety.

Table 105: Add SDR command request and response data

Request data
byte number

Data field

1:N SDR data

Response
data byte
number

Data field

1 Completion code

2 Record ID for added record, LS byte

3 Record ID for added record, MS byte

Delete SDR command
This command is available to the MC.

Add SDR command 187



This command deletes the sensor record specified by record ID. The requester’s ID and the reservation ID
must also match the present owner of the SDR repository.

Table 106: Delete SDR command request and response data

Request data
byte number

Data field

1 Reservation ID, LS byte

2 Reservation ID, MS byte

3 Record ID of record to delete, LS byte

4 Record ID of record to delete, MS byte

Response
data byte
number

Data field

1 Completion code

2 Record ID for deleted record, LS byte

3 Record ID for deleted record, MS byte

Clear SDR repository command
This command is available to the MC.

This command clears all records from the SDR repository and re-initializes the SDR repository subsystem.
Mainly a development and production aid, use of this command should be avoided in utilities and system
management software. The requester’s ID and reservation ID information must also match the present owner
of the SDR repository.

Table 107: Clear SDR repository command request and response data

Request data
byte number

Data field

1 Reservation ID, LS byte

2 Reservation ID, MS byte

3 C (43h)

4 L (4Ch)

5 R (52h)

6 • AAH = initiate erase
• 00h = get erasure status

Table Continued

188  Clear SDR repository command



Response
data byte
number

Data field

1 Completion code

2 Erasure progress

• [7:4] - reserved
• [3:0] - erasure in progress

◦ 0h = erasure in progress
◦ 1h = erase completed

Get SDR repository time command
This command returns the time from the SDR Repository Device. This time is used by the SDR Repository
Device for tracking when changes to the SDR Repository have been made. The time keeping format is
specified in Timestamp format on page 12.

Table 108: Get SDR repository command response data

Response data
byte number

Data field

1 Completion code

2:5 Time is four-byte format. LS byte first.

Run initialization agent command
This command is available to the MC.

This command can be used to cause the initialization agent to run. The command can be used to check the
status of the initialization agent as well.

Table 109: Run initialization agent command request and response data

Request data
byte number

Data field

1 • [7:1] - reserved
• [0]

◦ 1b = run initialization agent
◦ 0b = get status of initialization agent process

Response
data byte
number

Data field

Table Continued

Get SDR repository time command 189



1 Completion code

2 • [7:1] - reserved
• [0]

◦ 1b = initialization completed
◦ 0b = initialization in progress

FRU inventory device commands
The FRU inventory data contains information such as the serial number, part number, asset tag, and a short
descriptive string for the FRU. The contents of a FRU inventory record are specified in the Platform
Management FRU Information Storage Definition.

The FRU inventory device is a logical device and is not necessarily implemented as a separate physical
device. The device that contains the SDR repository device also typically holds FRU inventory information for
the main system board and chassis, there may also be a separate FRU inventory device that provides access
to the FRU information for a replaceable module such as a memory codule.

Get FRU inventory area info command
This command returns the overall size of the FRU inventory area for a device in bytes.

Table 110: Get FRU inventory area info command request and response data

Request data
byte number

Data field

1 FRU device id. FFh = reserved

Response
data byte
number

Data field

1 Completion code.

2 FRU inventory area size in bytes, LS byte.

3 FRU inventory area size in bytes, MS byte.

4 [7:1] — reserved

[0] — 0b = device is accessed by bytes, 1b = device is accessed by words

Read FRU data command
This command returns the specified data from the FRU inventory info area. This is effectively a low level
direct interface to a non-volatile storage area. This means that the interface does not interpret or check any
semantics or formatting for the data being accessed. The offset used in this command is a logical offset that
may correspond to the physical address used in the device that provides the non-volatile storage. For
example, FRU information kept in flash at physical address 1234h, however the offset 0000h would be used
with this command to access the start of the FRU information. IPMI FRU device data (devices formatted per
FRU) as well as process and DIMM FRU data always starts from offset 0000h unless otherwise noted.

190  FRU inventory device commands



NOTE:

While offset values are 16–bit allowing FRU devices up to 64K words, the count to read, count
returned and count written fields are 8–bits. This is in recognition of the limitations on the size of
messages. Currently IPMB messages are limited to 32–bytes total.

Table 111: Read FRU data command request and response data

Request data
byte number

Data field

1 FRU device id. FFh = reserved.

2 FRU inventory offset to read, LS byte.

3 FRU inventory offset to read, MS byte.

Offset is in bytes or words per device access type returned in the get fru inventory
area info command.

4 Count to read – count is 1 based.

Response
data byte
number

Data field

1 Completion code. Generic, plus following command specific:

• 81h = FRU device busy.

The requested cannot be completed because the implementation of the logical FRU
device is in a state where the FRU information is temporarily unavailable. This could be
due to a condition such as a loss of arbitration if the FRU is implemented as a device on
a shared bus.

• Software can elect to retry the operation after at least 30 milliseconds if this code is
returned.

NOTE:

It is highly recommended that management controllers incorporate built-in retry
mechanisms. Generic IPMI software cannot be relied upon to take advantage of this
completion code

2 Count returned – count is 1 based

3:2+N Requested data.

Write FRU data command
This command writes the specified byte or word to the FRU inventory info area. This is a low level direct
interface to a non-volatile storage area. This means that the interface does not interpret or check any
semantics or formatting for the data being written. The offset used in this command is a logical offset that may
correspond to the physical address used in device that provides the non-volatile storage. For example, FRU
information could be kept in flash at physical address 1234h, however offset 0000h would still be used with
this command to access the start of the FRU information. IPMI FRU device data (devices that are formatted
per FRU) as well as processor and DIMM FRU data always starts from offset 0000h unless otherwise noted.

Command specification 191



Updating the FRU inventory data is presumed to be a system level, privileged operation. There is no
requirement for devices implementing this command to provide mechanisms for rolling back the FRU
inventory area in the case of incomplete or incorrect writes.

Table 112: Write FRU data command request and response data

Request data
byte number

Data field

1 FRU device id. FFH = reserved

2 FRU inventory offset to write, LS byte

3 FRU inventory offset to write, MS byte

4:3+N Data to write

Response
data byte
number

Data field

1 Completion code. Generic, plus following command specific:

• 80h = write-protected offset. Cannot complete write because one or more bytes of FRU
data are to a write-protected offset in the FRU device. An implementation may have
allowed a partial write of the data to occur.

• 81h = FRU device busy. Refer to Read FRU data command.

for the description of this completion code.

2 Count written – count is 1 based

Sensor Device Commands

Get device SDR info command
This command returns general information about the collection of sensors in a dynamic sensor device.

NOTE:

Issuing this command without a parameter, returns LUN based device sensor information.

Regarding LUN based device sensor information, a device could implement four sensors under one LUN and
twelve under another. SDR info does not return the aggregate of the sensor information, instead you must
issue a Get Device SDR Info command for each LUN.

192  Sensor Device Commands



Table 113: Get device SDR info command request and response data

Request data
byte number

Data field

1 Operation (optional)

[7:1] — reserved

[0] — 1b = Get SDR count, returns the total number of SDRs in the device.

0b = Get sensor count, returns the number of sensors implemented on the LUN
addressed.

Response data
byte number

Data field

1 Completion code

2 For operation = Get sensor count (or if byte 1 not present in the request): Number of
sensors in device for the LUN this command was addressed.

For operation = Get SDR count, the total number of SDRs in the device.

3 Flags:

Dynamic population

[7]

0b = static sensor population. The number of sensors handled by this device is fixed and
a query shall return records for all sensors.

1b = dynamic sensor population. This device may have its sensor population vary during
run time (any time other than during installation).

Reserved

[6:4] — reserved

Device LUNs

[3] — 1b = LUN 3 has sensors

[2] — 1b = LUN 2 has sensors

[1] — 1b = LUN 1 has sensors

[0] — 1b = LUN 0 has sensors

4:7 Sensor population change indicator. LS byte first.

Four byte timestamp, or counter. Updated or incremented each time the sensor
population changes. This field is not provided if the flags indicate a static sensor
population.

Get device SDR command
The Get Device SDR command allows SDR information for sensors and is typically implemented in a
satellite management controller. It also returns SDR types in addition to 01h and 02h. This is an optional
command for static sensor devices, and mandatory for dynamic sensor devices. The format action is similar
to the get sdr command for repository devices.

Get device SDR command 193



NOTE:

A sensor device uses consistent sensor numbers for particular sensor.

The Get Device SDR command includes a reservation id that notifies the requestor that a record may
have changed during a multi-part read.

Table 114: Get device SDR command request and response data

Request data
byte number

Data field

1 Reservation ID. LS Byte. Only required for partial reads with a non-zero offset into record
field. Use 0000h for reservation id.

2 Reservation ID. MS Byte.

3 Record id of record to

get
, LS byte. 0000h returns the first record.

4 Record id of record to

get
, MS byte.

5 Offset into record.

6 Bytes to read. FFh means read entire record.

Response data
byte number

Data field

1 Completion code. Generic, plus command specific:

80h = record changed. This status is returned if any of the record contents were altered
since the last time the requestor issued the request with 00h for the offset into SDR
field.

2 Record id for next record, LS byte.

3 Record id for next record, MS byte.

4:3+N Requested bytes from record.

Reserve device SDR repository command
This command is used to obtain a reservation id that is part of the mechanism used to notify the
requestor of record changes during a multi-part read.

194  Reserve device SDR repository command



Table 115: Reserve device SDR repository command request and response data

Response
data byte
number

Data field

1 Completion code

2 Reservation id, LS byte 0000h reserved.

3 Reservation id, MS byte

Request data
byte number

Data field

1 Sensor number (FFh = reserved)

Get sensor thresholds command
This command retrieves the threshold for a given sensor.

Table 116: Get sensor thresholds command response data

Response
data byte
number

Data field

1 Completion code

2 [7:6] — reserved. Returns as 00b.

Readable thresholds: This bit mask indicates which thresholds are readable

[5] — 1b = upper non-recoverable threshold

[4] — 1b = upper critical threshold

[3] — 1b = upper non-critical threshold

[2] — 1b = lower non-recoverable threshold

[1] — 1b = lower critical threshold

[0] — 1b = lower non-critical threshold

3 lower non-critical threshold, if present, ignore on read otherwise

4 lower critical threshold, if present, ignore on read otherwise

5 lower non-recoverable threshold, if present, ignore on read otherwise

6 upper non-critical threshold, if present, ignore on read otherwise

7 upper critical, if present, ignore on read otherwise

8 upper non-recoverable, if present, ignore on read otherwise

Get sensor thresholds command 195



Set sensor event enable command
This command provides the ability to disable or enable Event Message Generation for individual sensor
events. The command is also used to enable or disable sensors in their entirety using the disable scanning
bit.

A typical sensor will come up with Event Messages (EvM) enabled for all thresholds/states. Sensors are not
required to have individual or per-event Event Message enables. The type of enable/disable support that a
sensor provides can be obtained from the Sensor Data Record for the sensor.

Note that internal event flags and scanning will continue even though Event Message generation is disabled,
unless sensor scanning is disabled.

Table 117: Set sensor event enable command request and response data

Request data
byte number

Data field

1 Sensor number (FFh = reserved)

2 [7] 0b Disable all Event Messages from this sensor [does not impact individual
enable/disable status]

[6] 0b Disable scanning on this sensor

[5:4] 00b do not change individual enables

01b Enable selected event messages

10b Disable selected event messages

11b Reserved

[3:0] Reserve
d

3 For sensors with threshold based events:

[7] 1b Assertion event for upper non-critical going high

[6] 1b Assertion event for upper non-critical going low

[5] 1b Assertion event for lower non-recoverable going high

[4] 1b Assertion event for lower non-recoverable going low

[3] 1b Assertion event for lower critical going high

[2] 1b Assertion event for lower critical going low

[1] 1b Assertion event for lower non-critical going high

[0] 1b Assertion event for lower non-critical going low

Table Continued

196  Set sensor event enable command



For sensors with discrete events

[7] 1b Assertion event for state 7

[6] 1b Assertion event for state 6

[5] 1b Assertion event for state 5

[4] 1b Assertion event for state 4

[3] 1b Assertion event for state 3

[2] 1b Assertion event for state 2

[1] 1b Assertion event for state 1

[0] 1b Assertion event for state 0

4 For sensors with threshold based events

[7:4] Reserved. Written as 0000b.

[3] 1b Assertion event for upper non-recoverable going high

[2] 1b Assertion event for upper non-recoverable going low

[1] 1b Assertion event for upper critical going high

[0] 1b Assertion event for upper critical going low

For sensors with discrete events (00h otherwise)

[7] 1b Reserved. Written as 0b.

[6] 1b Assertion event for state bit 14

[5] 1b Assertion event for state bit 13

[4] 1b Assertion event for state bit 12

[3] 1b Assertion event for state bit 11

[2] 1b Assertion event for state bit 10

[1] 1b Assertion event for state bit 9

[0] 1b Assertion event for state bit 8

5 For sensors with threshold based events

[7] 1b Deassertion event for upper non-critical going high

Table Continued

Command specification 197



[6] 1b Deassertion event for upper non-critical going low

[5] 1b Deassertion event for lower non-recoverable going high

[4] 1b Deassertion event for lower non-recoverable going low

[3] 1b Deassertion event for lower critical going high

[2] 1b Deassertion event for lower critical going low

[1] 1b Deassertion event for lower non-critical going high

[0] 1b Deassertion event for lower non-critical going low

For sensors with discrete events (00h otherwise)

[7] 1b Deassertion event for state bit 7

[6] 1b Deassertion event for state bit 6

[5] 1b Deassertion event for state bit 5

[4] 1b Deassertion event for state bit 4

[3] 1b Deassertion event for state bit 3

[2] 1b Deassertion event for state bit 2

[1] 1b Deassertion event for state bit 1

[0] 1b Deassertion event for state bit 0

6 For sensors with threshold based events

[7:4] Reserved. Written as 0000b.

[3] 1b Deassertion event for upper non-recoverable going high

[2] 1b Deassertion event for upper non-recoverable going low

[1] 1b Deassertion event for upper critical going high

[0] 1b Deassertion event for upper critical going low

For sensors with discrete events (00h otherwise)

[7] 1b Reserved. Written as 0b.

[6] 1b Deassertion event for state bit 14

[5] 1b Deassertion event for state bit 13

Table Continued

198 Command specification



[4] 1b Deassertion event for state bit 12

[3] 1b Deassertion event for state bit 11

[2] 1b Deassertion event for state bit 10

[1] 1b Deassertion event for state bit 9

[0] 1b Deassertion event for state bit 8

Response data
byte number

Data field

1 Completion code

Get sensor event enable command
This command returns the enabled/disabled state for Event Message Generation from the selected sensor.
The command also returns the enabled/disabled state for scanning on the sensor.

A typical sensor will come up with Event Messages (EvM) enabled for all thresholds. Sensors are not required
to have individual or per-event Event Message enables. The type of enable/disable support that a sensor
provides can be obtained from the Sensor Data Record for the sensor.

Table 118: Get sensor event enable command request and response data

Request data
byte number

Data field

1 Sensor number (FFh = reserved)

Response
data byte
number

Data field

1 Completion code

2 [7] 0b Disable all Event Messages from this sensor [does not impact individual
enable/disable status]

[6] 0b Disable scanning on this sensor

[5:0] Reserved. Ignore on read.

3 For sensors with threshold based events:

[7] 1b Assertion event for upper non-critical going high

[6] 1b Assertion event for upper non-critical going low

[5] 1b Assertion event for lower non-recoverable going high

[4] 1b Assertion event for lower non-recoverable going low

Table Continued

Get sensor event enable command 199



[3] 1b Assertion event for lower critical going high

[2] 1b Assertion event for lower critical going low

[1] 1b Assertion event for lower non-critical going high

[0] 1b Assertion event for lower non-critical going low

For sensors with discrete events

[7] 1b Assertion event for state 7

[6] 1b Assertion event for state 6

[5] 1b Assertion event for state 5

[4] 1b Assertion event for state 4

[3] 1b Assertion event for state 3

[2] 1b Assertion event for state 2

[1] 1b Assertion event for state 1

[0] 1b Assertion event for state 0

4 For sensors with threshold based events

[7:4] Reserved. Written as 0000b.

[3] 1b Assertion event for upper non-recoverable going high

[2] 1b Assertion event for upper non-recoverable going low

[1] 1b Assertion event for upper critical going high

[0] 1b Assertion event for upper critical going low

For sensors with discrete events (00h otherwise)

[7] 1b Reserved.

[6] 1b Assertion event for state bit 14

[5] 1b Assertion event for state bit 13

[4] 1b Assertion event for state bit 12

[3] 1b Assertion event for state bit 11

[2] 1b Assertion event for state bit 10

Table Continued

200 Command specification



[1] 1b Assertion event for state bit 9

[0] 1b Assertion event for state bit 8

5 For sensors with threshold based events

[7] 1b Deassertion event for upper non-critical going high

[6] 1b Deassertion event for upper non-critical going low

[5] 1b Deassertion event for lower non-recoverable going high

[4] 1b Deassertion event for lower non-recoverable going low

[3] 1b Deassertion event for lower critical going high

[2] 1b Deassertion event for lower critical going low

[1] 1b Deassertion event for lower non-critical going high

[0] 1b Deassertion event for lower non-critical going low

For sensors with discrete events (00h otherwise)

[7] 1b Deassertion event for state bit 7

[6] 1b Deassertion event for state bit 6

[5] 1b Deassertion event for state bit 5

[4] 1b Deassertion event for state bit 4

[3] 1b Deassertion event for state bit 3

[2] 1b Deassertion event for state bit 2

[1] 1b Deassertion event for state bit 1

[0] 1b Deassertion event for state bit 0

6 For sensors with threshold based events

[7:4] Reserved. Written as 0000b.

[3] 1b Deassertion event for upper non-recoverable going high

[2] 1b Deassertion event for upper non-recoverable going low

[1] 1b Deassertion event for upper critical going high

[0] 1b Deassertion event for upper critical going low

Table Continued

Command specification 201



For sensors with discrete events (00h otherwise)

[7] 1b Reserved. Written as 0b.

[6] 1b Deassertion event for state bit 14

[5] 1b Deassertion event for state bit 13

[4] 1b Deassertion event for state bit 12

[3] 1b Deassertion event for state bit 11

[2] 1b Deassertion event for state bit 10

[1] 1b Deassertion event for state bit 9

[0] 1b Deassertion event for state bit 8

Get sensor reading command
This command returns the present reading for sensor. The sensor device may return a stored version of a
periodically updated reading, or the sensor device may scan to obtain the reading after receiving the request.

The event/reading type code from the SDR determines the state bits returned by discrete sensors.

Table 119: Get sensor reading command request data

Request data
byte number

Data field

1 Sensor number (FFh = reserved)

Response data
byte number

Data field

1 Completion code.

2 Sensor reading

Byte 1: byte of reading. Ignore on read if the sensor does not return a numeric (analog)
value.

Table Continued

202  Get sensor reading command



3 [7] — 0b = All event messages disabled from this sensor.

[6] — 0b = sensor scanning disabled.

[5] — 1b = reading/state unavailable (formerly: initial update in progress). This bit is set
to indicate a re-arm or set event receiver command has been used to request an
update of the sensor status, and that update has not occurred yet. Software should use
this bit to avoid getting an incorrect status while the first sensor update is in progress.
This bit is only required if it is possible for the controller to receive and process a get
sensor reading or get sensor event status command for the sensor before
the update completes. This is most likely the case for sensors, such as fan RPM sensors
that may require seconds to accumulate the first reading after a re-arm. The bit may also
indicate when a reading/state is unavailable because the management controller cannot
obtain a valid reading or state for the monitored entity, typically because the entity is not
present.

[4:0] — reserved. Ignore on read.

Table Continued

Command specification 203



(4) For threshold-based sensors:

Present threshold comparison status

[7:6] — reserved. Returned as 1b. Ignore on read.

[5] — 1b = at or above (≥) upper non-recoverable threshold

[4] — 1b = at or above (≥) upper critical threshold

[3] — 1b = at or above (≥) upper non-critical threshold

[2] — 1b = at or below (≤) lower non-recoverable threshold

[1] — 1b = at or below (≤) lower critical threshold

[0] — 1b = at or below (≤) lower non-critical threshold

For discrete reading sensors:

[7] = 1b = state 7 asserted

[6] = 1b = state 6 asserted

[5] = 1b = state 5 asserted

[4] = 1b = state 4 asserted

[3] = 1b = state 3 asserted

[2] = 1b = state 2 asserted

[1] = 1b = state 1 asserted

[0] = 1b = state 0 asserted

(5) For discrete reading sensors only. (Optional)

(00h Otherwise)

[7] = Reserved. Returned as 1b. Ignore on read.

[6] = 1b = state 14 asserted

[5] = 1b = state 13 asserted

[4] = 1b = state 12 asserted

[3] = 1b = state 11 asserted

[2] = 1b = state 10 asserted

[1] = 1b = state 9 asserted

[0] = 1b = state 8 asserted

DCMI specific commands
This section includes commands specific to the Data Center Manageability Interface implementation in iLO.
The following DCMI completion codes table shows the completion codes and definitions found in data byte 1
of DCMI specific command responses.

204  DCMI specific commands



Table 120: DCMI completion codes

Code Definition

00h Command completed normally.

C0h Node busy. Command could not be processed because command processing resources are
temporarily unavailable.

C1h Invalid Command. Used to indicate an unrecognized or unsupported command.

C2h Command invalid for given LUN.

C3h Timeout while processing command. Response unavailable.

C4h Out of space. Command could not be completed because of a lack of storage space
required to execute the given command operation.

C5h Reservation cancelled or invalid reservation ID.

C6h Request data truncated.

C7h Request data length invalid.

C8h Request data field length limit exceeded.

C9h Parameter out of range. One or more parameters in the data field of the request are out of
range. This is different from ‘Invalid data field’ (CCh) code in that it indicates that the
erroneous fields have a contiguous range of possible values.

CAh Cannot return number of requested data bytes.

CBh Requested sensor, data, or record not present.

CCh Invalid data field in request.

CDh Command illegal for specified sensor or record type.

CEh Command response could not be provided.

CFh Cannot execute duplicated request. This completion code is for devices which cannot return
the response that was returned for the original instance of the request. Such devices should
provide separate commands that allow the completion status of the original request to be
determined. An event receiver does not use this completion code, but returns the 00h
completion code in the response to (valid) duplicated requests.

D0h Command response could not be provided. SDR repository in update mode.

D1h Command response could not be provided. Device in firmware update mode.

D2h Command response could not be provided. MC initialization or initialization agent in
progress.

Table Continued

Command specification 205



Code Definition

D3h Destination unavailable. Cannot deliver request to selected destination. For example, this
code can be returned if a request message is targeted to SMS, but receive message queue
reception is disabled for the particular channel.

D4h Cannot execute command due to insufficient privilege level or other security-based
restriction.

D5h Cannot execute command. Command, or request parameters, not supported in present
state.

D6h Cannot execute command. Parameter is illegal because command sub-function has been
disabled or is unavailable.

FFh Unspecified error.

Get DCMI capability info command
This command provides version information for DCMI and information about the mandatory and optional
DCMI capabilities that are available on the particular platform. The command is session-less, and is a bare-
metal provisioning command. The availability of features does not imply the features are configured.

Table 121: Get DCMI capability info command request and response data

Request data
byte number

Data field

1 Group extension identification = DCh

2 Parameter selector

Response data
byte number

Data field

1 Completion code. See DCMI specific commands.

2 Group extension identification = DCh

3:4 DCMI specification conformance:

• Byte 1 — Major version (01h)
• Byte 2— Minor version (01h)

5 Parameter revision = 02h

6:N Parameter data.

206  Get DCMI capability info command



Table 122: DCMI Capabilities Parameters

Parameter # Parameter data (non-volatle unless noted)

Supported DCMI
capabilities

1 This field returns the supported capabilities available in the server in
conformance to DCMI specification for both Platform and Manageability
access. All reserved bits shall be set to 0b.

• Byte 1–Reserved
• Byte 2–Platform capabilities.

All bits:

◦ 0b=Not present
◦ 1b=Available

◦ [7:1] — Reserved
◦ [0] — Power management/monitoring support (Defined as support

for either power monitoring or power monitoring plus power
limiting.)

• Byte 3–Manageability access capabilities.

All bits:

◦ 0b=Not present
◦ 1b=Available

◦ [7:3] — Reserved
◦ [2] — Out-of-band secondary (second) LAN channel available

(optional).
◦ [1] — Serial TMODE available (TMODE on serial port to

management controller) (optional)
◦ [0] — Power management/monitoring support (Defined as support

for either power monitoring or power monitoring plus power
limiting.)

Mandatory platform
attributes

2 This field returns the platform attributes for th platform capabilities. All
reserved bits shall be set to 0b.

• Byte 1:2–SEL attributes

◦ [15]–SEL automatic rollover enabled (SEL overwrite) (0b=Not
present, 1b=available)

◦ [14] Entire SEL Flush upon rollover (Valid if rollover is enabled)
(0b=Not present, 1b=available)

◦ [13] Record level SEL flush upon rollover (Valid if rollover is
enabled) (0b=Not present, 1b=available)

◦ [12] Reserved
◦ [11:0] Number of SEL entries (maximum of 4096) (the number of

entries supported must be 64 or great to be in conformance)
• Byte 3–4—Reserved
• Byte 5–Sample frequency for temperature monitoring (in units of 1

second)

Table Continued

Command specification 207



Parameter # Parameter data (non-volatle unless noted)

Optional platform attributes 3 This field returns the attributes required for the recommended platform
capabilities.

• Byte 1 — Power management device slave address

◦ [7:1] 7–bit I
2

C slave address on IPMB.
◦ [0] Reserved. Write as 0b.
◦ [20h=MC, XXh=Satellite/external controller]

• Byte 2 — Power management controller channel number

◦ [7:4] Channel number for channel that management controller is
located on. Use 0h for the primary MC.

◦ [3:0] Device revision (used for providing the revision control for
power magement capability)

Manageability access
attributes

4 This field returns the attributes of the manageability access.

• Byte 1–Mandatory primary LAN OOB support (RMCP+ support only)

[7:0] Channel number (0xFFh==Not supported)
• Byte 2–Optional secondary LAN OOB support (RMCP+ support only)

[7:0] Channel number (0xFFh==Not supported)
• Byte 3–Optional serial out-of-band TMODE capability

[7:0] Channel number (0xFFh==Not supported)

Get power reading command
The get power reading command returns system power statistics.

Table 123: Get power reading command request and response data

byte data field

Request Data 1 Group Extension Identification = DCh

2 Mode

• 01h – System Power Statistics
• 02h – Enhanced System Power Statistics

3 Mode based attributes

• For Mode 01h System Power Statistics Attributes:

Reserved for future use 00h
• For Mode 02h Enhanced System Power Statistics Attributes:

Rolling Average Time periods, only the time periods specified in Parameter 5
of Get DCMI Capabilities Info Command are supported.

Table Continued

208  Get power reading command



4 Reserved

Response Data 1 Completion Code. Refer to DCMI specific commands.

2 Group Extension Identification = DCh

3:4 Current Power in watts

5:6 Minimum Power over sampling duration in watts Note: Sampling duration
depends on Mode selection.

7:8 Maximum Power over sampling duration in watts Note: Sampling duration
depends on Mode selection.

9:10 Average Power over sampling duration in watts Note: Sampling duration depends
on Mode selection.

11:14 IPMI Specification based Time Stamp

For Mode 02h The time stamp specifies the end of the averaging window

15:18 Statistics reporting time period

• For Mode 01h:

Timeframe in milliseconds, over which the controller collects statistics
• For Mode 02h:

Timeframe reflects the Averaging Time period in units.

19 Power Reading State

• [0:5] Reserved
• [6] 1b – Power Measurement active
• 0b – No Power Measurement is available.
• [7] Reserved

Get power limit command
The Get power limit command returns the present settings for the power limit that has been set using the Set
power limit command.

Table 124: Get power limit command request and response data

byte data field

Request Data 1 Group Extension Identification = DCh

2:3 Reserved for future use, use 0000h

Response Data 1 Completion Code. Refer to DCMI specific commands.

00h = Power Limit Active

80h = No Active Set Power Limit

OEM can also provide Completion Codes.

Table Continued

Get power limit command 209



2 Group Extension Identification = DCh

3:4 Reserved for future use

5 Exception Actions, taken if the Power Limit is exceeded and cannot be controlled
within the Correction Time Limit

• 01h Hard Power Off system and log event to SEL 02h – 10h OEM defined
actions

• 02h — 10h OEM defined actions
• 11h Log event to SEL only
• 12h-FFh Reserved

6:7 Power Limit Requested in Watts

8:11 Correction Time Limit in milliseconds

See description of corresponding parameter in Set power limit command.

12:13 Reserved for future use

14:15 Management application Statistics Sampling period in seconds

Set power limit command
The Set Power Limit command sets the power limit parameters on the system. The power limit defines a
threshold which, if exceeded for a configurable amount of time, will trigger a system power off and/or event
logging action. This enables the Power Limit to be used as a form of “circuit breaker” for protecting data
center power delivery from systems that have abnormal, prolonged power excursions outside their normal
operating range.

It is recommended to do a Get Power Limit or check the Get Power Reading command before attempting to
set and activate or re-activate the power limit. If the limit is already active, the Set Power Limit command may
immediately change the limit that is in effect. However, software should always explicitly activate the limit
using the Activate/Deactivate power limit command to ensure the setting takes effect.

It should be noted that in the current context, this command shall be used to set a static upper limit of system
power usage and not used as a command interface for dynamic or frequently changing power limit. The
power limit set should be persistent across AC and DC cycles.

Table 125: Set power limit command request and response data

byte data field

Request Data 1 Group Extension Identification = DCh

2:4 Reserved for future use

Table Continued

210  Set power limit command



5 Exception Actions, taken if the Power Limit is exceeded and
cannot be controlled within the Correction time limit

00h – No Action

01h – Hard Power Off system and log events to SEL.

02h – 10h OEM defined actions

11h – Log event to SEL only

12h-FFh Reserved

6:7 Power Limit Requested in Watts

8:11 Correction Time Limit in milliseconds

Maximum time taken to limit the power after the platform
power has reached the power limit before the Exception
Action will be taken. The Exception Action shall be taken if the
system power usage constantly exceeds the specified power
limit for more than the Correction Time Limit interval. The
Correction Time Limit timeout automatically restarts if the
system power meets or drops below the Power Limit.

12:13 Reserved for future use

14:15 Management application Statistics Sampling period in
seconds

Response Data 1 Completion Code. Refer to DCMI specific commands.

=00h – Success

=84h – Power Limit out of range

=85h – Correction Time out of range

=89h – Statistics Reporting Period out of range OEM can also
provide Completion Codes.

2 Group Extension Identification = DCh

Activate/Deactivate power limit command
The command is used to activate or deactivate the power limit set. This command should succeed a
successful Set Power limit command.

Table 126: Activate/Deactivate power limit command request and response data

byte data field

Request Data 1 Group Extension Identification = DCh

2 Power Limit Activation

00h – Deactivate Power Limit

01h – Activate Power Limit

Table Continued

Activate/Deactivate power limit command 211



3:4 Reserved

Response Data 1 Completion Code. Refer to DCMI specific commands.

2 Group Extension Identification = DCh

Get asset tag command
This command enables management consoles or local software to get asset tag data. UTF-8 encoding is
identified when the first three bytes (offsets 0, 1, and 2) of the returned asset tag data are set to the UTF-8
byte order mark (BOM) pattern, EFh, BBh, BFh, respectively.

Table 127: Get asset tag command request and response data

Request data
byte number

Data field

1 Group extension identification = DCh

2 Offset to read

3 Number of bytes to read (16 bytes maximum)

NOTE:

If the number of bytes to read starting from the given offset to read exceeds the
number of remaining asset tag data bytes, the command will complete normally
(completion code = 00h) but will only return the remaining bytes (provided the
offset to read and bytes to read are within their correct ranges.) For example, if the
asset tag length is presently 20 bytes, submitting an offset to read of 16 and a
bytes to read of 16 will be accepted, but only the asset tag data bytes at offsets
16–19 will be returned.

Response data
byte number

Data field

Table Continued

212  Get asset tag command



1 Completion code. C9h shall be returned if offset >62, offset to read+bytes to read >63, or
bytes to read is >16.

The following applies to implementations that keep the DCMI asset tag and IPMI FRU
asset tag information synchronized:

If the encoding indicated by the Type/Length byte in the IPMI FRU is not set to ASCII
+Latin1 or the language code for the IPMI FRU product info area is not set to English (0
or 25), the command shall return the requested data bytes, but shall also return a
command-specific completion code based on the detected encoding type, as follows:

• 80h=Encoding type in FRU is binary/unspecified
• 81h=Encoding type in FRU is BCD Plus
• 82h=Encoding type is FRU is 6–bit ASCII Packed
• 83h=Encoding type is set to ASCII+Latin1 but language code is not set to English

(indicating data is 2–byte Unicode).

The management controller does not check, nor require, a BOM in the asset tag data;
asset tag data can be stored and retrieved as ASCII+Latin1 without receiving an error
completion code.

2 Group extension identification = DCh

3 Total asset tag length (must be less than or equal to 64 bytes)

4:N Asset tag data (starting from the offset to read)

Get DCMI sensor info command
This DCMI command returns information about a DCMI-specified sensor. A particular sensor is identified by
the combination of its entity ID and entity instance numbers.

Table 128: DCMI Entity ID extension

Entity ID description Entity ID Entity instance Sensor type

Inlet temperature 40h 0x01...n Temp (01h)

CPU temperature (based
on number of processors
or cores)

41h 0x01...n Temp (01h)

Baseboard temperature 42h 0x01...n Temp (01h)

Table 129: Get DCMI sensor info command request and response data

Request data
byte number

Data field

1 Group extension identification = DCh

2 Sensor type

Table Continued

Get DCMI sensor info command 213



3 Entity ID

4 Entity instance

• 00h = Retrieve information about all instances associate with entity ID
• 01h-FFh = Retrieve only the information about particular instance

5 Entity instance start, used with entity instance 00h for number of instance exceeding one
IPMI response.

Response data
byte number

Data field

1 Completion code. See DCMI specific commands.

.

2 Group extension identification = DCh

3 Total number of available instances for the entity ID.

4 Number of record IDs in this response (maximum of 8 per response)

01h for entity instance not equal to 00h.

5:6 + N SDR record ID corresponding to the entity IDs.

• Byte 1: Record ID LS byte, used for retrieving SDR records.
• Byte 2: Record ID MS byte, used for retrieving SDR records.

NOTE:

The management controller can include SDR record IDs corresponding to entities
IDs compatible IPMI 2.0 specified entity IDs such as:

• Request for inlet temp (40h) can also include air inlet temp info (37h)
• Request for CPU temp (41h) can also include CPU temp (03h)
• Request for baseboard temp (42h) can also include system board (07h)

Set asset tag command
This command enables remote consoles or local software to set the asset tag data. UTF-8 encoding is
identified when the first three bytes (offsets 0, 1, and 2) of the returned asset tag data are set to the UTF-8
byte order mark (BOM) pattern, EFh, BBh, BFh, respectively. Otherwise the data encoding is assumed to be
the ASCII+Latin1 subset. Note that the management controller simply stores all eight bits of each of the given
asset tag data bytes. It does not check the encoding of the asset tag data bytes, nor does it check for a BOM
in the data.

Implementations that keep the asset tag in synch with the IPMI FRU data shall write the given characters to
the asset tag field in the product info area of the IPMI FRU device and set the encoding of the corresponding
type/length byte field to ASCII+Latin1.

214  Set asset tag command



Table 130: Set asset tag command request and response data

Request data
byte number

Data field

1 Group extension identification = DCh

2 Offset to write (0 to 62). The offset is relative to the first character of the asset tag data.

3 Number of bytes to write (16 bytes maximum)

NOTE:

The command must set the overall length of the asset tag (in bytes) to the value
(offset to write + bytes to write). Any pre-existing asset tag bytes at offsets past that
length are automatically deleted.

4–N Asset tag data

Response data
byte number

Data field

1 Completion code. C9h shall be returned if offset >62, offset+bytes to write >63, or bytes
to writer >16.

A C9h completion code shall also be returned if an attempt is mde to writer to an offset
that is more than one great than the length of the presently stored asset tag data. Set
operations for asset tags must be contiguous. For example, if the asset tag is presently
seven bytes long an attempt to writer starting at offset 10 will be rejected and a C9h
completion code returned.

2 Group extension identification = DCh

3 Total asset tag length. This is the length in bytes of the stored asset tag after set
operation has completed. The asset tag length shall be set to the sum of the offset to
write plus bytes to write. For example, if offset to write is 32 and bytes to write is 4, the
total asset tag length returned will be 36.

Management controller ID string
The management controller ID string is provided in order to accommodate the requirement for the
management controllers to identify themselves during discovery phases. Set/get management
controller identifier string commands are provided to provision the controller with the unique
identification. The management controller must maintain the management controller identifier string as non-
volatile data.

The management controller ID string is used to override the default OEM provided ID for DHCP discovery. If
the management controller ID string is not provisioned, then the default controller ID shall be “DCMI<mac-
address>”. The maximum length of the identifier string shall be 64 bytes including a NULL terminator.

Management controller ID string 215



Get controller ID string command

Table 131: Get controller ID string command request and response data

Request data
byte number

Data field

1 Group extension identification = DCh

2 Offset to read

3 Number of bytes to read (16 bytes maximum)

Response data
byte number

Data field

1 Completion code. See DCMI specific commands.

2 Group extension identification = DCh

3 Total length.

NOTE:

The maximum length of the identifier string must not exceed 64 bytes.

4–N Data

Set controller ID string command

Table 132: Set controller ID string command request and response data

Request data
byte number

Data field

1 Group extension identification = DCh

2 Offset to write

3 Number of bytes to write (16 bytes maximum)

4–N Data

Response data
byte number

Data field

1 Completion code. See DCMI specific commands.

Table Continued

216  Get controller ID string command



2 Group extension identification = DCh

3 Total length written.

NOTE:

The maximum length of the identifier string must not exceed 64 bytes.

OEM commands

Get IPMI Configuration Parameters Command
netfn = 0x30, cmd = 0xbc, user privilege

Table 133: 

Byte Data field

Request Data 1 • [7] - 0b = get parameter
• 1b = get parameter revision only
• [6:0] - reserved

2 Parameter selector

3 Set Selector. Selects a particular set or block data under the
given parameter selector. 00h if parameter does not use a set
selector.

4 Block Selector (00h if parameter does not require a block
number)

Response Data 1 Completion Code. Generic plus the following command-
specific completion codes: 80h = parameter not supported.

2 [7:0] - Parameter revision. Format: MSN = present revision.
LSN = oldest revision parameter is backward compatible with.
11h for parameters in this specification.

The following data bytes are not returned when the 'get parameter revision only' bit is 1b.

Table Continued

OEM commands 217



3:N Information parameter data

If the rollback feature is implemented, the BMC makes a copy
of the existing parameters when the 'set in progress' state
becomes asserted (See the Set In Progress parameter #0).
While the 'set in progress' state is active, the BMC will return
data from this copy of the parameters, plus any uncommitted
changes that were made to the data. Otherwise, the BMC
returns parameter data from non-volatile storage.

Set In Progress (volatile) 0 data 1 - This parameter is used to indicate when any of the
following parameters are being updated, and when the updates
are completed. The bit is primarily provided to alert software
than some other software or utility is in the process of making
changes to the data. An implementation can also elect to
provide a 'rollback' feature that uses this information to decide
whether to 'roll back' to the previous configuration information,
or to accept the configuration change. If used, the roll back
shall restore all parameters to their previous state. Otherwise,
the change shall take effect when the write occurs.

[7:2] - reserved

[1:0] - 00b = set complete.

If a system reset or transition to powered down state occurs
while 'set in progress' is active, the BMC will go to the 'set
complete' state. If rollback is implemented, going directly to 'set
complete' without first doing a 'commit write' will cause any
pending write data to be discarded.

01b = set in progress.

This flag indicates that some utility or other software is
presently doing writes to parameter data. It is a notification flag
only, it is not a resource lock. The BMC does not provide any
interlock mechanism that would prevent other software from
writing parameter data while.

10b = commit write (optional).

This is only used if a rollback is implemented. The BMC will
save the data that has been written since the last time the 'set
in progress' and then go to the 'set in progress' state. An error
completion code will be returned if this option is not supported.

11b = reserved

218 Command specification



Table 134: IPMI Configuration Parameters

Parameter # Parameter Data

Test Mode 1 This field is used to configure the BMC's IPMI stack for running a
particular test suite. This setting takes effect immediately.

[7:1] - reserved

[0] - mode

0h = None (default)

1h = DCTS (responders address not scrutinized)

SEL Rollover Mode 2 This field is used to configure the BMC's IPMI stack SEL
behavior. This setting takes effect immediately.

[7:1] - reserved

[0] - mode

0h = No Rollover

1h = Rollover, Record level SEL flush (default)

Device ID Configuration 3 This field is used to configure the BMC's IPMI stack Device ID for
Get Device ID response.

[7:1] - reserved

[0] - Device ID Mode

0h = Standard (HPE IANA) (default)

1h = Legacy (HP IANA) ( C-class blades will have this hard set)

Sensor Configuration 4 This field is used to configure the BMC's IPMI stack Sensor
generation. This requires a bmc reset in order to take effect.

[7:3] - reserved

[2] - Compact Discrete Sensor Record Mode

0h = Use Compact Sensor Records for Discrete Sensors
(default)

1h = Legacy - Use Full Records for Discrete Sensors ( C-class
blades will have this hard set)

[1] - Analog/Discrete Combined Sensor Mode

0h = Standard (default)

1h = Legacy

[0] - Sensor Naming Convention

0h = Legacy (default)

1h = Programmatic

Table Continued

Command specification 219



Fan Sensor Configuration 5 This field is used to configure the BMC's IPMI stack for Fan
Sensor generation. This requires a bmc reset in order to take
effect.

[7:1] - reserved

[0] - Fan Sensor Type

0h = Severity (07h) (default)

1h = Availability (0Ah)

System Health Sensor
Configuration

6 This field is used to configure the BMC's IPMI stack for System
Health Sensor generation. This requires a bmc reset in order to
take effect.

[7:1] - reserved

[0] - Generate Legacy OEM type

0h = Disabled (default)

1h = Enabled ( C-class blades will have this hard set)

DIMM FRU Configuration 7 This field is used to configure the BMC's IPMI stack FRU
generation. This requires a bmc reset in order to take effect.

[7:1] - reserved

[0] - DIMM FRU generation on LUN 1

0h = Disabled (default) ( C-class blades will have this hard set)

1h = Enabled

DIMM Sensor Configuration 8 This field is used to configure the BMC's IPMI stack DIMM
Sensor generation. This requires a bmc reset in order to take
effect.

[7:1] - reserved

[0] - Individual DIMM sensor generation on LUN 1

0h = Disabled (default) (C-class blades will have this hard set)

1h = Enabled

Set IPMI Configuration Parameters Command
netfn = 0x30, cmd = 0xbb, admin privilege

Table 135: 

Byte Data Field

Request Data 1 Parameter selector.

Table Continued

220  Set IPMI Configuration Parameters Command



2:n Configuration Parameter Data

Response Data 1 Completion Code. Generic plus the following command-specific
completion

codes:

80h = parameter not supported.

81h = attempt to set the 'set in progress' value (in parameter #0)
when not in the 'set complete' state. (This completion code
provides a way to recognize that another party has already
'claimed' the parameters)

82h = attempt to write read-only parameter

Table 136: IPMI Configuration Parameters

Parameter # Parameter Data

Test Mode 1 This field is used to configure the BMC's IPMI stack for running a
particular test suite. This setting takes effect immediately.

[7:1] - reserved

[0] - mode

0h = None (default)

1h = DCTS (responders address not scrutinized)

SEL Rollover Mode 2 This field is used to configure the BMC's IPMI stack SEL
behavior. This setting takes effect immediately.

[7:1] - reserved

[0] - mode

0h = No Rollover

1h = Rollover, Record level SEL flush (default)

Device ID Configuration 3 This field is used to configure the BMC's IPMI stack Device ID for
Get Device ID response.

[7:1] - reserved

[0] - Device ID Mode

0h = Standard (HPE IANA) (default)

1h = Legacy (HP IANA) ( C-class blades will have this hard set)

Table Continued

Command specification 221



Sensor Configuration 4 This field is used to configure the BMC's IPMI stack Sensor
generation. This requires a bmc reset in order to take effect.

[7:3] - reserved

[2] - Compact Discrete Sensor Record Mode

0h = Use Compact Sensor Records for Discrete Sensors
(default)

1h = Legacy - Use Full Records for Discrete Sensors ( C-class
blades will have this hard set)

[1] - Analog/Discrete Combined Sensor Mode

0h = Standard (default)

1h = Legacy

[0] - Sensor Naming Convention

0h = Legacy (default)

1h = Programmatic

Fan Sensor Configuration 5 This field is used to configure the BMC's IPMI stack for Fan
Sensor generation. This requires a bmc reset in order to take
effect.

[7:1] - reserved

[0] - Fan Sensor Type

0h = Severity (07h) (default)

1h = Availability (0Ah)

System Health Sensor
Configuration

6 This field is used to configure the BMC's IPMI stack for System
Health Sensor generation. This requires a bmc reset in order to
take effect.

[7:1] - reserved

[0] - Generate Legacy OEM type

0h = Disabled (default)

1h = Enabled ( C-class blades will have this hard set)

Table Continued

222 Command specification



DIMM FRU Configuration 7 This field is used to configure the BMC's IPMI stack FRU
generation. This requires a bmc reset in order to take effect.

[7:1] - reserved

[0] - DIMM FRU generation on LUN 1

0h = Disabled (default) ( C-class blades will have this hard set)

1h = Enabled

DIMM Sensor Configuration 8 This field is used to configure the BMC's IPMI stack DIMM
Sensor generation. This requires a bmc reset in order to take
effect.

[7:1] - reserved

[0] - Individual DIMM sensor generation on LUN 1

0h = Disabled (default) (C-class blades will have this hard set)

1h = Enabled

Command specification 223



IPMI Messaging and Interfaces
IPMI uses message based interfaces for the different interfaces to the platform management subsystem such
as IPMB, LAN, and the system interface to the MC.

All IPMI messages share the same fields in the message payload regardless of the interface (transport) that
they are transferred over. The same core of IPMI messages is available over every IPMI specified interface,
just wrapped differently according to the needs of the particular transport. This enables management software
that works on one interface to be converted to use a different interface by changing the underlying driver for
that particular transport. This also enables knowledge reuse, that is a developer who understands the
operation of IPMI commands over one interface can readily apply that knowledge to a different IPMI interface.

IPMI messaging uses a request/response protocol. IPMI request messages are commonly referred to as
commands. The use of a request/response protocol facilitates the transfer of IPMI messages over different
transports. It also facilitates multi-master operations on busses like the IPMB, allowing messages to be
interleaved and multiple management controllers to directly intercommunicate on the bus.

IPMI commands are grouped into functional command sets, using a field called the network function code
(NetFn). There are command sets for sensor and event related commands, chassis commands, and others.
This functional grouping makes it easier to organize and manage the assignment and allocation of command
values.

All IPMI request messages have a network function command and optional data fields. All IPMI response
messages carry network function command optional data and a completion code field. As inferred earlier, the
differences between the different interfaces has to do with the framing and protocols used to transfer this
payload. For example, the IPMB protocol adds fields for I2C and controller addressing and data integrity
checking and handling whereas the LAN interface adds formatting for sending IPMI messages as LAN
packets.

System Interfaces
IPMI defines three standard system interfaces that system software use for transferring IPMI messages to the
MC. In order to support a variety of microcontrollers, IPMI offers a choice of system interface, this is also key
to enabling cross-platform software. The system interfaces are similar enough so that a single driver can be
created that supports all IPMI system interfaces.

The system interface connects to a system bus that can be driven by the main processor(s). The present IPMI
system interfaces can be I/O or memory mapped. Any system bus that allows the main processor(s) to
access the specified I/O or memory locations, and meet the timing specifications, can be used. Thus, an IPMI
system interface could be hooked to the X-bus, PCI, LPC or a proprietary bus off the baseboard chipset.

IPMI system interfaces:

• Keyboard controller style (KCS) — the bit definitions and operation of the registers follow that used in the
Intel 8742 Universal Peripheral Interface microcontroller. KCS reflects the fact that the 8742 interface was
used as the legacy keyboard controller interface in PC architecture computer systems. This interface is
available built-in to several commercially available microcontrollers. Data is transferred across the KCS
interface using a per byte handshake.

Message interface description
The heart of this specification is the definition of the messages and data formats used for implementing
sensors, event messages, event generators and event receivers, the SDR Repository, and the SEL in the
platform management architecture. These messages are designed for delivery using a messaging interface
with a particular set of characteristics. This section presents the general specification of that interface, and the
messages.

224  IPMI Messaging and Interfaces



The message interface is defined as a request/response interface. That is, a request message is used to
initiate an action or set data, and a response message is returned to the requester. In this document, request
messages are often referred to as commands, and response messages as responses.

All messages in this specification share the same common elements as the payload to the command
interpreter in the logical device that receives the message. The messaging interfaces differ in the framing,
physical addressing, and data integrity mechanisms that are used to deliver the payload.

Table 137: Common message components

Component Description

Network Function (NetFn) A field that identifies the functional class of the message. The network
function clusters IPMI commands into different sets.

Request/Response identifier A field that unambiguously differentiates request messages from response
messages. In the IPMB protocol, this identifier is merged with the NetFn
code where even numbered network function codes identify request
messages and odd numbered network function codes identify response
messages.

Requester’s ID Information that identifies the source of the request. This information must
be sufficient to allow the response to be returned to the correct requestor.
For example, the IPMB requesters ID consists of the slave address and
LUN of the requester device. For a multiple stream system interface the
requesters ID is the stream ID for the stream through which the request was
issued.

Responder’s ID A field that identifies the Responder to the request. In request messages
this field is used to address the request to the desired responder, in
response messages this field is used to assist the requester in matching up
a response with a given request.

Command The messages specified in this document contain a one-bye command field.
Commands are unique within a given network function. Command values
can range from 00h through FDh. Code FEh is reserved for future extension
of the specification and code FFh is reserved for message interface level
error reporting on potential future interfaces.

Data The data field carries the additional parameters for a request or a response,
if any.

IPMI Messaging Interfaces
In iLO, there are two system interface implementations specified for the MC: KCS and a proprietary high
speed interface, CHIF. The MC can also be reached through additional interfaces such as the IPMB and LAN
interfaces.

Network function codes
The network layer in the connection header includes a six-bit field identifying the function accessed. The
remaining two bits are the LUN field. The LUN field provides further sub-addressing within the node.

The network function clusters commands into functional command sets. In a parsing hierarchy, the LUN field
may be thought of as the selector for a particular network function handler in the node, and the network
function may be considered the selector for a particular command set handler within the node.

IPMI Messaging Interfaces 225



The iLO network function codes table defines the supported network functions. With the exception of the
application and firmware transfer network functions, the commands and responses for a given network
function are not node specific. The format and function for standard command sets is specified later.

Table 138: iLO network function codes

Value(s) Name Meaning Description

00, 01 Chassis Chassis device
requests and
responses

00h identifies the message as a command/request
and 01h as a response, relating to the common
chassis control and status functions.

04, 05 Sensor/
Event

Sensor and event
requests and
responses

This functionality can be present on any node. 04h
identifies the message as a command/request and
05h as a response, relating to the configuration and
transmission of event messages and system sensors.

06, 07 Application Application requests
and responses

06h identifies the message as an application
command/request and 07h a response. The exact
format of application messages are implementation-
specific for a particular device, with the exception of
App messages that are defined by the IPMI
specifications.

0A, 0B Storage Non-volatile storage
requests and
responses

This functionality can be present on any node that
provides non-volatile storage and retrieval services.

0C, 0D Transport Media-specific
configuration &
control

Requests (0Ch) and responses (0Dh) for IPMI-
specified messages that are media-specific
configuration and operation, such as configuration of
serial and LAN interfaces.

2Ch–2Dh Group
extension

Non-IPMI group
requests and
responses

The first data byte position in requests and responses
under this network function identifies the defining body
that specifies command functionality. Software
assumes that the command and completion code field
positions will hold command and completion code
values.

The following values are used to identify the defining
body.

• DCh DCMI specifications at http://
www.intel.com/go/dcmi

• All other reserved

When this network function is used, the ID for the
defining body occupies the first data byte in a request,
and the second data byte (following the completion
code) in a response.

Completion codes
All response messages specified in this document include a completion code as the first byte in the data field
of the response. A management controller that gets a request to an invalid (unimplemented) LUN must return

226  Completion codes



an error completion code using that LUN as the responder’s LUN (RsLUN) in the response. The completion
code indicates whether the associate request messages completed successfully and normally, and if not,
provides a value indicating the completion condition.

Completion codes work at the command level. They are responses to the interpretation of the command after
it has been received and validated through the messaging interface. Errors at the network (messaging
interface) level are handled with a different error reporting mechanism.

Completion code values are split into generic, device-specific (which covers OEM) and command-specific
ranges. All commands can return generic completion codes. Commands that complete successfully return the
00h command completed normally, completion code. Commands that produce error conditions or return a
response that varied from what was specified by the request parameters for the command, return a non-zero
completion code as specified in the following Completion Codes table.

Table 139: Completion Codes

Code Definition

GENERIC COMPLETION CODES 00h, C0h-FFh

00h Command completed normally

C0h Node Busy. Command could not be processed— command processing resources
temporarily unavailable.

C1h Invalid Command. Indicates an unrecognized or unsupported command.

C2h Command invalid for given LUN.

C3h Timeout while processing command. Response unavailable.

C4h Out of Space. Command could not be completed because of a lack of storage
space.

C5h Reservation canceled or invalid reservation id.

C6h Request data truncated.

C7h Invalid request data length.

C8h Request data field length limit exceeded.

C9h Parameter out of range. One or more parameters in the data field of the Request
are out of range. This is different from Invalid data field (CCh) code in that it
indicates that the erroneous field(s) has a contiguous range of possible values.

CAh Cannot return number of requested data bytes.

CBh Requested sensor, data, or record not present.

CCh Invalid data field in request.

CDh Command illegal for specified sensor or record type.

Table Continued

IPMI Messaging and Interfaces 227



Code Definition

CEh Command response could not be provided.

CFh Cannot execute duplicated request. This completion code is for devices which
cannot return the response that was returned for the original instance of the
request. Such devices should provide separate commands that allow the
completion status of the original request to be determined.

D0h Command response could not be provided. SDR repository in update mode.

D1h Command response could not be provided. Device in firmware update mode.

D2h Command response could not be provided. MC initialization or initialization agent
in progress.

D3h Destination unavailable. Cannot deliver request to selected destination. Example,
this code can be returned if a request message is targeted to SMS, but receive
message queue reception is disabled for the particular channel.

D4h Cannot execute command due to insufficient privilege level or other security based
restriction (example, disabled for firmware firewall).

D5h Cannot execute command. Command or request parameter(s) not supported in
present state.

D6h Cannot execute command. Parameter is illegal because command sub-function
has been disabled or is unavailable (example, disabled for firmware firewall).

FFh Unspecified error.

DEVICE SPECIFIC (OEM) CODESs 01h — 7Eh

01h — 7Eh Device specific (OEM) completion codes. This range is used for command specific
codes that are also specific for a particular device and version. A priori knowledge
of the device command set is required for interpretation of these codes.

COMMAND SPECIFIC CODES 80h — BEh

80h — BEh Standard command specific codes. This range is reserved for command specific
completion codes for commands specified in this document.

all other Reserved.

Additional command specific completion codes, if any, are listed in the completion code field description for
the command. In some cases, use of certain command specific completion codes is mandatory. This will be
listed alongside the description of the completion code in the command table. If no command specific
completion codes are listed, the description will solely indicate that the field is the completion code field.

NOTE:

The generic completion code values can be used with any command, regardless of whether additional
command specific completion codes are defined.

228 IPMI Messaging and Interfaces



Channel Model, Authentication, Sessions, and Users
IPMI v2.0 incorporates a common communication infrastructure referred to as the Channel Model.

Channels provide the mechanism for directing the routing of IPMI messages between different media
connections to the MC. A channel number identifies a particular connection. For example, 0 is the channel
number for the primary IPMB. Up to nine total channels can be supported (the System Interface and primary
IPMB, plus seven additional channels with a media type assigned by the implementer.) Channels can thus be
used to support multiple IPMB, LAN, Serial, etc., connections to the MC.

Channels can be session-based or session-less. A session is used for two purposes:

1. As a framework for user authentication.
2. To support multiple IPMI messaging streams on a single channel.

Session-based channels thus have at least one user login and support user and message authentication.
Session-less channels do not have users or authentication. A LAN channel is session-based, while the
System Interface and IPMB are examples of session-less channels.

In order to do IPMI messaging using a session, a session must first be activated. Activating a session
authenticates a particular user.

A session has a Session ID that is used for tracking the state of a session. The Session ID mechanism allows
multiple sessions to be simultaneously supported on a channel.

The concept of user is essentially a way to identify a collection of privilege and authentication information.
User configuration is done on a per channel basis. This means that a given user could have a different
password and set of privileges for accessing the MC via a LAN channel than via a serial channel.

Privilege Levels determine which IPMI commands a given user can execute over a given channel.

Privilege Limits set the maximum privilege level at which a user can operate. A user is configured with a given
maximum privilege limit for each channel. In addition, there is a Channel Privilege Limit that sets the
maximum limit for all users on a given channel. The Channel Privilege Limit takes precedence over the
privilege configured for the user. Thus, a user can operate at a privilege level that is no higher than the lower
of the User Privilege Limit and the Channel Privilege Limit.

Channel numbers
Each interface has a channel number that is used when configuring the channel and for routing messages
between channels. Only the channel number assignments for the primary IPMB and the System Interface are
fixed, the assignment of other channel numbers can vary on a per-platform basis. Software uses a Get
Channel Info command to determine what types of channels are available and what channel number
assignments are used on a given platform. The following table describes the assignment and use of the
channel numbers:

Table 140: iLO channel number assignments

Channel
Number

Type/Protocol Description

0h Primary IPMB Assigned for communication with the primary IPMB. IPMB protocols
are used for IPMI messages.

2h LAN Assigned for communication between the zone MC and the LAN.
RMCP+ is used as the protocol.

Table Continued

Channel Model, Authentication, Sessions, and Users 229



Channel
Number

Type/Protocol Description

Eh Present channel The value Eh is used as a way to identify the current channel that
the command is being received from, for example, if software wants
to know what channel number it’s presently communicating over, it
can find out by issuing a

Get Channel Info
command for channel E.

Fh System interface Assigned for routing messages to the system interface.

Logical channels
From the IPMI Messaging point-of-view, a party that bridges a message from one channel to another only is
mainly concerned that it gets the correct response from the MC. Often, it does not matter to remote console or
system software whether the target channel and devices are physically implemented or not. For example, in
iLO the IPMB is a logical channel.

Channel Privilege Levels
Channel privilege limits determine the maximum privilege that a user can have on a given channel. One
channel can be configured to allow users to have up to Administrator level privilege, while another channel
may be restricted to allow no higher than User level. The privilege level limits take precedence over the
privilege level capabilities assigned per user.

Channels can be configured to operate with a particular maximum Privilege Level. Privilege levels tell the MC
which commands are allowed to be executed via the channel. The Set Channel Access command sets
the maximum privilege level limit for a channel. The Set Session Privilege Level command requests
the ability to perform operations at a particular privilege level. The Set Session Privilege Level
command can only be used to set privilege levels that are less than or equal to the privilege level limit for the
entire channel, regardless of the privilege level of the user.

Table 141: Channel privilege levels

Channel privilege level Description

Callback Lowest privilege level. Only commands necessary to support initiating a

Callback
are allowed.

User Primarily commands that read data structures and retrieve status. Commands
that can be used to alter MC configuration, write data to the management
controllers, or perform system actions such as resets, power on/off, and
watchdog activation are disallowed.

Table Continued

230  Logical channels



Channel privilege level Description

Operator All MC commands are allowed, except for configuration commands that can
change the behavior of the out-of-band interfaces. For example, operator
privilege does not allow the capability to disable individual channels or higher.

Administrator All MC commands are allowed, including configuration commands. An
administrator can even execute configuration commands that would disable the
channel that the administrator is communicating over.

Users & Password support
User in this specification refers to a collection of data that identifies a password for establishing an
authenticated session and the privileges associated with that password. For configuration purposes, sets of
user information are organized and accessed according to a numeric User ID. When activating a session,
user information is looked up with a text username.

NOTE:

In iLO, anonymous users are not supported due to security concerns.

User access can be enabled on a per channel basis. Thus, different channels can have different sets of users
enabled.

If desired, a username on one channel can be associated with a different password than the same username
on a different channel. When a session is activated the MC scans usernames sequentially starting with User
ID 1 and looks for the first user with matching username and access granted for the given channel. Thus,
having different passwords for a given username requires configuring multiple user entities — one for each
different password being used for a particular set of channels.

The specification allows a number of different implementations for supporting users on a channel. Minimum
requirements include:

• No anonymous user access.
• User names may be fixed or configured, or a combination of both, at the choice of the implementation.
• Support for configuring user passwords for all User IDs is required.
• Support for setting per user privilege limits is optional. If the

Set User Access
command is not supported, the privilege limits for the channel are used for all users.

IPMI sessions
Authenticated IPMI communication to the MC is accomplished by establishing a session. Once established, a
session is identified by a Session ID. The Session ID may be thought of as a handle that identifies a
connection between a given remote user and the MC, using either the LAN or Serial/Modem connection.

The specification supports having multiple active sessions established with the MC. iLO supports up to 32
simultaneous sessions.

The specification also allows a given endpoint (identified by an IP address) on the LAN to open more than
one session to a MC. This capability allows a single system to serve as a proxy providing MC LAN sessions
for other systems. It is not intended for one system to use this provision to open multiple session to the MC for
that systems sole use.

An IPMI messaging connection to the MC fits one of three classifications, session-less, single-session, or
multi-session.

Users & Password support 231



Session-less connections
A session-less connection is unauthenticated. There is no user login required for performing IPMI messaging.
The System Interface and IPMB are examples of session-less connections.

A special case of a session-less connection can occur over an interface that supports session-based
messaging. Session-based connections have certain commands that are accepted and responded to outside
of a session. When that occurs, the channel is effectively operating in a session-less manner for those
commands. Commands that are handled outside of a session have fixed values for session-specific fields in
the message. For example, when the Get Channel Authentication Capabilities is sent over a
LAN channel outside of a session, the Session ID is set to NULL and authentication type set to NONE in the
IPMI session header. Note that commands accepted outside of a session can also be accepted within the
context of a session, in which case they must have valid Session IDs, etc. in the session header to be
accepted.

Session inactivity timeouts
A session is automatically closed if no new, valid message has been received for the session within the
specified interval since the last message. The session must be re-authenticated to be restored. A remote
console can optionally use the Activate Session command to keep a session open during periods of
inactivity.

Note that only an active session will keep the Session Inactivity Timeout from expiring. IPMI
message activity that occurs outside of an active session has no effect. This is to prevent someone from
keeping a phone connection indefinitely while trying to guess different passwords to activate a session.

The MC only monitors for inactivity while the connection is switched over to the MC. Note that closing a
session is not always the same as hanging up a modem connection. Serial/modem sessions are also
automatically closed when the connection is switched over to the system, but the phone connection remains
active. The MC only terminates the phone connection if a session is closed due to an inactivity timeout while
the serial connection is routed to the MC.

The timeout and tolerance values are specified for the MC that will timeout and close the session. System
software should take this tolerance into account, plus any additional delays due to media transmission times,
etc.

An implementation can provide an option to allow timeout configuration via a parameter in the configuration
parameters for the given channel type.

System interface messaging
Messaging between system software and the other management BUSes such as the IPMB, is accomplished
using channels and a Receive Message Queue. A channel is a path through the MC that allows messages
to be sent between the system interface and a given bus or message transport. The Receive Message
Queue is used to hold message data for system software until system software can collect it. All channels
share the Receive Message Queue for transferring messages to system management software. The
Receive Message Queue data contains channel, session, and IPMI addressing information that allows
system software to identify the source of the message, and to format a message back to the source if
necessary.

System management software is responsible for emptying the Receive Message Queue whenever it has
data in it. Messages are rejected if the Receive Message Queue gets full. It is recommended that the
Receive Message Queue have at least two slots for each channel. The Receive Message Queue is a
logical concept. An implementation may choose to implement it as an actual queue, or could implement
separate internal buffers for each channel. It is recommended that the implementation attempt to leave a slot
open for each channel that does not presently have a message in the queue. This helps prevent lockout by
having the queue fill with just messages from one interface.

232  Session-less connections



The MC itself can, if necessary, use the Receive Message Queue and Messaging Channels to send
asynchronous messages to system management software. The recommended mechanism for accomplishing
this is to define a unique channel with a protocol type of system. To send an asynchronous message to
system software the MC would place a message from that channel directly into the Receive Message
Queue in System format. System software would be able to respond back to the MC using a Send Message
command for that channel.

Bridging
MC Messaging Bridging provides a mechanism for routing IPMI Messages between different media. Bridging
is only specified for delivering messages between channels; it is not specified for delivering messages
between two sessions on the same channel.

With IPMI 2.0, bridging is extended to support delivering IPMI messages between active connections/
sessions on the same channel.

There are three mechanisms for bridging messages between different media connected to the MC, depending
on the message target:

• MC LUN 10b — used for delivering messages to the System Interface. The MC automatically routes any
messages it receives via LUN 10b to the Receive Message Queue.

• Send Message
command from System Interface — used for delivering messages to other channels, such as the IPMB.
The messages appear on the channel as if they’ve come from MC LUN 10b. Thus, if the message is a
request message, the response goes to MC LUN 10b and the MC automatically places the response into
the Receive Message Queue for retrieval. System software is responsible for matching the response up
with the original request, thus the No Tracking setting in the

Send Message
command.

• Send Message
command with response tracking — used with response tracking for bridging request messages to all
other channels except when the System Interface is the source or destination of the message.

MC LUN 10b
Messages to SMS are always routed to the Receive Message Queue and the Send Message command is
not typically used. Messages to SMS are delivered via the MC SMS LUN 10b. The MC automatically
reformats and places any messages that are addressed to LUN 10b into the Receive Message Queue for
SMS to retrieve using the Get Message command.

Sending a request to SMS requires formatting the command so that it is address to MC LUN 10b. SMS can
retrieve the request from the Receive Message Queue, extract the originator’s address and channel info, and
then use the Send Message command to deliver a response.

The MC does not track requests and responses for messages to system software because the Receive
Message Queue provides the channel and session information necessary to format the Send Message
command to deliver the response. System software is capable of tracking the channel and session
information it used when generating a request. The No Tracking option is used for Send Message
commands from system software.

The responder then delivers its response message to MC LUN 10b and the response gets routed to the
Receive Message Queue. Conversely, if a channel wants to deliver a message to SMS, it sends the request
message to MC LUN 10b, and later SMS uses a Send Message command to return the response from MC
LUN 10b.

Bridging 233



Send Message command with response tracking
The Send Message command is used primarily to direct the MC to act as a proxy that translates a message
from one IPMI messaging protocol to another. The MC formats the data for the target channel type and
protocol and delivers it to the selected medium.

Media such as the IPMB do not include channel number and session information as part of their addressing
information. As a result, request messages from another channel must be delivered as if they originated from
the MC itself.

If the bridged message is a request, it is necessary for the MC to hold onto certain data, such as originating
channel and session information, so that when the response message comes back it can reformat the
response and forward it back to the originator of the request. The primary way the MC accomplishes this is by
assigning a unique sequence number to each request that it genearates, and saving a set of information in a
Pending Bridged Response table that is later used to reformat and route a response back to the originator of
the request.

The sequence number returned in the response is used to look up who generated the original response, the
saved formatting and address information. The MC then reformats and delivers the response to the original
requester and deletes the request from its list of pending responses. The Send Message command includes
a parameter that directs the MC to save translation information for and track outstanding request messages
for the purpose of routing the response back to the originator of the Send Message command.

NOTE:

With the exception of messages to SMS, when the Send Message command is used to deliver a
message to a given medium the message appears to have been originated by the MC. This means that
a controller on the IPMB can’t generically distinguish a bridged request from SMS from a bridged
request from LAN.

Table 142: Message bridging mechanism by source and destination

Message Type and direction Delivery
Mechanism

MC tracks
pending
responses

Request or Response from system interface to any other channel Send Message no

Request or Response to system interface from any other channel MC LUN 10b no

Request from any channel except system interface to IPMB Send Message yes

Response from IPMB to any channel except system interface MC LUN 00b yes

Bridged Request Example
This example illustrates a Send Message command from the LAN being used to deliver a request to IPMB.

The MC uses the sequence number that it places on the bridged request to identify the channel where the
request came from and where to send the response. It is important for the MC to ensure that unique
sequence numbers are used for pending requests from each channel. It is also important that sequence
numbers are unique for successive requests to a given responder. One way to manage sequence numbers to
the IPMB is to track them on a per responder basis. This can be kept in a table of Pending Bridged Response
information.

In order to get the response back to the LAN, the IPMB response must return the same sequence number
that was passed in the request. The management controller uses the sequence number to look up the

234  Send Message command with response tracking



channel type specific addressing, sequence number, and security information that it stored when the request
was forwarded. For example, if the channel type is LAN then the response message must be formatted up in
an RMCP/UDP packet with the IP address of the requester, the sequence number passed in the original
request, the appropriate security key information, and so on.

When a request message is bridged to another channel by encapsulating it in a Send Message command
(from a source channel other than the system interface), the MC immediately returns a response to the Send
Message command itself. Meanwhile, the request is extracted from the Send Message command and
forwarded to the specified target channel.

The Send Message command must be configured to direct the MC to keep track of data in the request so
when the response comes back from the target device it can be forwarded by the MC back to the channel that
delivered the original Send Message command to the MC. When the response comes back from the target,
the MC uses the tracking information to form at the response for the given channel. To the party that initiated
the Send Message command, the response will appear as if the encapsulated request was directly executed
by the MC.

For example, suppose a Get Device ID command has been encapsulated in a Send Message command
directed to the IPMB from a LAN channel. The MC will immediately send a response to the Send Message
command back on the LAN. The MC will extract the encapsulated Get Device ID message content and
format it as a Get Device ID request for IPMB. The target device on IPMB responds with a Get Device ID
response message in IPMB format. The MC takes the tracking information that was stored when the Send
Message command was issued, and uses it to create a Get Device ID response in LAN format. The
Responder’s address information in that response can either be that of the MC, of the device on IPMB that
the request was targeted at the choice of the MC implementation. Parties that initiate this type of bridged
request using the Send Message command should accept responses from the MC that use either address.

The following figure and steps present an example high-level design for handling a bridged request. Note that
the example shows information that is generated and stored, but it does not show any particular code module
that would perform that operation. That is, the choice of which functions are centralized, which are in a LAN
module, and which are in an IPMB module is left to the implementer.

IPMI Messaging and Interfaces 235



Figure 3: LAN to IPMB bridged request example

Procedure

1. When the MC receives the Send Message command with the Bridged Request parameter bit set, it
checks for an available entry in a Pending Bridged Response table and copies parameters from the
request to be bridged. When the response comes back, these parameters will be used to validate that the
response matches the earlier request and to reformat the response for the originating channel. The bold
outlined boxes represent parameters and data in the Send Message command that will ultimately be
copied to the resulting request on the target channel.

2. Any channel session information necessary to get the response back to the original requester will also
need to be recorded. In this example, the MC maintains a separate table of session information for the
LAN channel. An offset into that table is used as a handle for identifying the session information
associated with the request. This handle is used in the Pending Bridged Response table in place of
copying all the session information. Note that with such an implementation, it is important to remember
details such as invalidating and freeing any bridge table entry associated with that session if the session
should get closed while responses are pending.

3. In this example, the MC has a separate Sequence Number Allocator routine that ensures that sequence
numbers used in bridged requests are kept unique for a given channel. This is done so that the response
comes back, the sequence number can be used to look up corresponding request info entries from the
Pending Bridged Response table.

4. Responses have a five second Sequence Number Expiration interval. If a response is not received by the
expiration interval, the corresponding entry in the Pending Bridged Response entry is deleted and the
sequence number associated with the request can be reused. The Sequence Number Expiration column in

236 IPMI Messaging and Interfaces



this example represents a possible implementation where the value is decremented nominally once
every10 ms. The entry is considered to be free when the number reaches 0. In this example the Sequence
Number Expiration field could be used both for tracking sequence number expiration as well as a
mechanism for marking availability of the table entry.

5. The MC takes the indicated values and uses them to construct the bridged request. The request is a
combination of field values copied from the original Send Message command and values generated by the
MC. The MC generated values are shown with a bold, underlined typeface with an asterisk.

IPMB access via master write-read command
When an IPMB is implemented in the system, the MC serves as a controller to give system software access
to the IPMB. The IPMB allows non-intelligent devices as well as management controllers on the bus. To
support this operation, the MC provides the Master Write-Read command via its interface with system
software. The Master Write-Read command provides low-level access to non-intelligent devices on the IPMB,
such as FRU SEEPROMs.

The Master Write-Read command provides a subset of the possible I2C and SM BUS operations that covers
most I2C/SM BUS-compatible devices.

In addition to supporting non-intelligent devices on the IPMB, the Master Write-Read command also provides
access to non-intelligent devices on Private Busses behind management controllers. The main purpose of this
is to support FRU SEEPROMs on Private Busses.

MC IPMB LUNs
A MC supports several LUNs to which messages are sent via the IPMB interface. These LUNs are used to
identify different sub-addresses within the MC.

Table 143: MC IPMB LUNs

LUN Short Description Long Description

00b MC commands and Event
Request Messages

Event Request Messages received on this LUN are routed to the
Event Receiver Function in the MC and automatically logged if
SEL logging is enabled.

01b OEM LUN 1 OEM — reserved for MC implementer/system integrator
definition.

10b SMS Message LUN
(intended for messages to
System Management
Software)

Messages received on this LUN are routed to the Receiver
Message Queue and retrieved using a Read Message
command. The SMS_Avail flag is set whenever the Receive
Message Queue has valid contents.

11b OEM LUN 2 OEM — reserved for MC implementer/system integrator
definition

Sending Messages to IPMB from system software
SMS can use the MC for sending and receiving IPMB messages. Both IPMB request and response messages
can be sent and received using this mechanism. Therefore, not only can system software send requests to
the IPMB and receive responses from the IPMB, it is also possible for system software to receive requests
from the IPMB to send back IPMB responses.

System software sends messages to the IPMB through the system interface using the MC as an IPMB
controller. This is accomplished by using the Send Message command to write the message to the IPMB
(channel 0). The MC does not place any restrictions on the type or content of the IPMB message being sent.

IPMB access via master write-read command 237



System management software can send any IPMB request or response message it desires provided that the
message meets the maximum length requirements of the Send Message command.

System Management Software is responsible for providing all fields for the IPMB message, including
Requester and Responder Slave addresses and checksums. The following figures show an example using
the Send Message command to send a Set Event Receiver command to an IPMB device at slave
address 52h, LUN 00b, via the system interface. The example command sets the Event Receiver address to
20h — MC.

The heavy bordered fields show the bytes for the IPMB message carried in the Send Message command.
The requesters LUN field (rqLUN) is set to 10b (MC SMS LUN). This directs the responder to send the
response to the Set Event Receiver command to the system node’s Receive Message Queue.

Figure 4: IPMB request sent using Send Message command

Figure 5: Send Message command response

The response is for the Send Message command and not for the Set Event Receiver command. The
response to the Set Event Receiver command is returned later in the Receive Message Queue. System
software uses the Get Message command to read messages from the Receive Message Queue. System
software keeps track of any outstanding responses and matches responses up with corresponding requests
as they are returned. System software must also keep track of the protocol assigned to the particular channel
in order to interpret the response to the Get Message command.

Keyboard Controller Style Interface
The Keyboard Controller Style (KCS) is one of the supported MC to SMS interfaces. The KCS interface is
specified solely for SMS messages.

The KCS Interface supports polled operations. Implementations optionally provide an interrupt driven by the
OBF flag, this must not prevent driver software from using the interface in a polled manner. This allows
software to default to polled operation. It also allows software to use the KCS interface in a polled mode until
it determines the type of interrupt support. Methods for assigning and enabling such an interrupt are outside
the scope of this specification.

KCS Interface/MC LUNs
LUN 00b is typically used for all messages to the MC through the KCS Interface. LUN 10b is reserved for
Receive Message Queue use and should not be used for sending commands to the MC. Note that messages
encapsulated in a Send Message command can use any LUN in the encapsulated portion.

238  Keyboard Controller Style Interface



KCS Interface-MC Request message format
Request Messages are sent to the MC from system software using a write transfer through the KCS interface.
The message bytes are organized according to the following format specification:

Figure 6: KCS Interface/MC Request Message format

Where:

LUN This is a sub-address that allows messages to be routed to different LUNS that reside behind
the same physical interface. The LUN field occupies the least significant two bits of the first
message byte.

NetFN Provides the first level of functional routing for messages received by the MC via the KCS
Interface. The NetFn field occupies the most significant six bits of the first message byte. Even
NetFn values are used for requests to the MC, and odd NetFn values are returned in
responses from the MC.

Cmd This message byte specifies the operation that is to be executed under the specified Network
Function.

Data Zero or more bytes of data, as required by the given command. The general convention is to
pass data LS-byte first, but check the individual command specifications to be sure.

MC-KCS Interface Response Message format
Response Messages are Read Transfers from the MC to system software via the KCS interface. The MC only
returns responses via the KCS Interface when data needs to be returned. The message bytes are organized
according to the following format specification:

Where:

LUN Returns the LUN that was passed in the Request Message.

NetFn A return of the NetFn code that was passed in the Request Message. Except that an odd
NetFn value is returned.

Cmd Return of the Cmd code that was passed in the Request Message.

Completion
Code

Indicates whether the request completed successfully.

Data Zero or more bytes of data. The MC always returns a response to acknowledge the request,
regardless of whether data is returned.

KCS Interface-MC Request message format 239



LAN Interface
The LAN interface specifications define how IPMI messages can be sent to and from the MC encapsulated in
Remote Management Control Protocol (RMCP) packet datagrams. This capability is also referred to as IPMI
over LAN. IPMI also defines the associated LAN specific configuration interfaces for settings things such as
IP address other options, as well as commands for discovering IPMI based systems.

The Distributed Management Task Force (DMTF) specifies the RMCP format. This same packet format is
used for non-IPMI messaging via the DMTF’s Alert Standard Forum (ASF) specification. Using the RMCP
packet format enables more commonality between management applications that operate in an environment
that includes both IPMI based and ASF based systems.

IPMI v2.0 defines and extended packet format and capabilities that are collectively referred to as RMCP+ and
defined under the IPMI specific portion of an RMCP packet. RMCP+ utilizes authentication algorithms that are
more closely aligned with the mechanisms used for the ASF 2.0 specification. In addition, RMCP+ adds data
confidentiality (encryption) and payload capability. In iLO, IPMI v2.0/RMCP+ is implemented for the LAN
interface.

LAN alerting
IPMI supports LAN alerting in the form of SNMP traps that follow the Platform Even Trap (PET) format. SNMP
traps are typically sent as unreliable datagrams. However, IPMI includes a PET Acknowledge and Retry
option that allows an IPMI aware remote application to provide a positive acknowledge that the trap was
received.

IPMI LAN interface
This section describes the mechanisms specific to transferring IPMI messages between the MC and a remote
management system (remote console) over an Ethernet LAN connection using UDP under IPv4. The UPD
datagrams are formatted to contain IPMI request and response messages, plus additional messages for
discovery and authentication.

While an IPMI LAN interface can be accomplished using a LAN Controller that is dedicated to the MC, it will
usually be accomplished using LAN Controller that can be shared for both MC and system use.

There are two implementation that are likely to be used to deploy an IPMI LAN interface using a shared LAN
controller. The first implementation is using an embedded LAN controller, as shown in Figure 7: Embedded
LAN Controller Implementation on page 241, and the second is using a LAN controller on an add-in card,
as shown in Figure 8: PCI Management BUS Implementation on page 241

Both examples show a LAN Controller with the capability to detect UDP datagrams sent to a management
port. Any datagrams received on that port are forwarded to a side-band interface that allows them to be
delivered to or retrieved by the MC. These incoming platform management datagrams may also be delivered
to system software in parallel with being delivered to the MC.

The MC can use this same interface to inject datagrams onto the LAN. These datagrams are interleaved with
the network packets generated by the system software.

The LAN controller can be designed so that the interface for the management port is powered by standby
power and remains operative even when the system is powered down. This provides a mechanism that
allows IPMI LAN messaging to occur independent from system software and the systems power state. A LAN
controller dedicated to the MC can also be used.

240  LAN Interface



Figure 7: Embedded LAN Controller Implementation

Figure 8: PCI Management BUS Implementation on page 241 shows an implementation where the LAN
controller is implemented as a PCI add-in card connected to the MC via a PCI Management BUS connection.
This approach avoids the need to have the LAN Controller built into the system, allowing the LAN controller
portion of the IPMI LAN Interface to be added or updated at a later time.

Figure 8: PCI Management BUS Implementation

Remote Management Control Protocol (RMCP)
The Distributed Management Task Force (DMTF) has defined a RMCP for supporting pre-OS and OS absent
management. RCMP is a simple request-response protocol that can be delivered using UDP datagrams.
IPMI-over-LAN uses version 1 of the RMCP protocol and packet format.

RMCP includes a field that indicates the class of messages that can be embedded in an RMCP message
packet, including a class for IPMI messages. Other message classes are ASF and OEM.

An IPMI LAN implementation can also use ASF-class Ping and Pong messages to support the discovery of
IPMI managed systems on the network.

Remote Management Control Protocol (RMCP) 241



RMCP port numbers
RMCP uses two well-known ports under UDP. The following RMCP Port Numbers table describes these ports
and summarizes their use.

Table 144: RMCP Port Numbers

Port# Name Description

623 (26Fh) Aux bus Shunt
(Primary RMCP
Port)

The Primary RMCP Port — This port and the required RMCP messages
must be provided to conform with RMCP specifications.

There is a mandatory set of messages required to be supported on this
port. These messages are always sent in the clear so that system
software can discover systems that have RMCP support.

664 (298h) Secure Aux BUS
(Secondary RMCP
Port)

Referred to as the secondary RMCP port or secure port, it is only used
when it is necessary to encrypt packets using an algorithm or
specification that prevents also sending unencrypted packets from being
transferred via the same port. Since discovery requires sending in the
clear RMCP ping/pong packets, the secondary port is used to transfer
encrypted transfers while the primary port continues to support
unencrypted packets.

An implementation that utilizes this port must still support the Primary
RMCP port and the required messages on that port in order to be
conformant with the RMCP specifications.

Note that the common IPMI messaging protocols and authentication
mechanisms in this pecification do not use encrypted packets at the
RMCP level (encrypted packets in IPMI are defined unter the IPMI
message class), therefore IPMI messaging does not need to use the
secondary port.

RMCP Message Format
There are two types of RMCP messages: Data or Normal RMCP messages and RMCP acknowledge
messages. Data messages and ACK messages are differentiated by the ACK/normal bit of the class of
message field.

Table 145: RMCP Message Format

Field Size in bytes Description

RMCP Header

Version 1 06h = RMCP Version 1.0

Reserved 1 00h

Sequence Number 1 Varies, see text

Table Continued

242  RMCP port numbers



Field Size in bytes Description

Class of Message 1 This field identifies the form of the messages that follow this header.
All messages of class ASF (6) conform to the formats defined in this
specification and can be extended via an OEM IANA.

Bit 7 RMCP ACK

0 — Normal RMCP message

1 — RMCP ACK message

Bit 6:5 Reserved

Bit 4:0 Message Class

0–5 = Reserved

6 = ASF

7 = IPMI

8 = OEM defined

all other = Reserved

RMCP Data

Data Variable data based class of message

The following table presents how the ACK/Normal Bit and the message class combine to identify the type of
message under RMCP and which specification defines the format of the associated message data.

Table 146: Message Type Determination Under RMCP

ACK/Normal bit Message
Class

Message
Type

Message Data

ACK ASF RMCP ACK No Data. Message contains only RMCP heading, and
sequence number from the last message received.

ACK all other undefined not allowed

normal ASF ASF
Messages

Per ASF specification

normal OEM OEM
message
under RMCP

bytes:3 = OEM IANA

bytes 4:N = OEM message data (defined by
manufacturer or organization identified by the OEM
IANA field value)

normal IPMI IPMI
messages

Per this specification

Serial Over LAN (SOL)
SOL is the name for the redirection of baseboard serial controller traffic over an IPMI session. This enables
asynchronous serial-based OS and pre-OS communication over a connection to the MC. SOL can be used to

Serial Over LAN (SOL) 243



provide a user at a remote console a means of interacting with serial text-based applications over the IPMI
LAN session. A single remote console application can use SOL to simultaneously provide LAN access to IPMI
platform management and serial text redirection under a unified user interface. SOL is implemented as a
payload type under the IPMI v2.0 RMCP+ protocol. Access privileges for SOL are managed under the same
user configuration interfaces that are used for IPMI management. This simplifies the creation of configuration
software, remote management applications, and cross-platform configuration utilities.

244 IPMI Messaging and Interfaces



Support and other resources

Accessing Hewlett Packard Enterprise Support

• For live assistance, go to the Contact Hewlett Packard Enterprise Worldwide website:www.hpe.com/
assistance

• To access documentation and support services, go to the Hewlett Packard Enterprise Support Center
website:www.hpe.com/support/hpesc

Information to collect

• Technical support registration number (if applicable)
• Product name, model or version, and serial number
• Operating system name and version
• Firmware version
• Error messages
• Product-specific reports and logs
• Add-on products or components
• Third-party products or components

Accessing updates

• Some software products provide a mechanism for accessing software updates through the product
interface. Review your product documentation to identify the recommended software update method.

• To download product updates, go to either of the following:

◦ Hewlett Packard Enterprise Support Center

Get connected with updates

page:www.hpe.com/support/e-updates
◦ Software Depot website:www.hpe.com/support/softwaredepot

• To view and update your entitlements, and to link your contracts and warranties with your profile, go to the
Hewlett Packard Enterprise Support Center

More Information on Access to Support Materials

page:www.hpe.com/support/AccessToSupportMaterials

IMPORTANT:

Access to some updates might require product entitlement when accessed through the Hewlett
Packard Enterprise Support Center. You must have an HPE Passport set up with relevant
entitlements.

Hewlett Packard Enterprise authorized resellers
For the name of the nearest Hewlett Packard Enterprise authorized reseller, see the following sources:

Support and other resources 245



• In the United States, see the Hewlett Packard Enterprise U.S. service locator web site:http://
www.hpe.com/service_locator

• In other locations, see the Contact Hewlett Packard Enterprise worldwide web site:http://www.hpe.com/
contact

Related information
Documents

• HPE Moonshot Documentation Overview
• HPE Moonshot Configuration and Compatibility Guide
• HPE Moonshot 1500 Chassis Setup and Installation Guide
• HPE Moonshot 1500 Chassis Maintenance and Service Guide
• Important Download Documentation, Drivers, and Software and Firmware Updates
• HPE Moonshot Troubleshooting Guide
• Safety, Compliance, and Warranty Information
• HPE Moonshot iLO Chassis Management Firmware User Guide
• HPE Moonshot Component Pack Release Notes

These documents are on the Hewlett Packard Enterprise website at:

http://www.hpe.com/info/ilo

Websites

• HPE iLO website:http://www.hpe.com/info/ilo
• Intel IPMI specification website:http://www.intel.com/design/servers/ipmi/tools.htm

Websites
Website Link

Hewlett Packard Enterprise Information Library www.hpe.com/info/enterprise/docs

Hewlett Packard Enterprise Support Center www.hpe.com/support/hpesc

Contact Hewlett Packard Enterprise Worldwide www.hpe.com/assistance

Subscription Service/Support Alerts www.hpe.com/support/e-updates

Software Depot www.hpe.com/support/softwaredepot

Customer Self Repair www.hpe.com/support/selfrepair

Insight Remote Support www.hpe.com/info/insightremotesupport/docs

Serviceguard Solutions for HP-UX www.hpe.com/info/hpux-serviceguard-docs

Single Point of Connectivity Knowledge (SPOCK)
Storage compatibility matrix

www.hpe.com/storage/spock

Storage white papers and analyst reports www.hpe.com/storage/whitepapers

iLO RESTful API guide https://hewlettpackard.github.io/ilo-rest-api-docs/

246  Related information



Customer self repair
Hewlett Packard Enterprise customer self repair (CSR) programs allow you to repair your product. If a CSR
part needs to be replaced, it will be shipped directly to you so that you can install it at your convenience.
Some parts do not qualify for CSR. Your Hewlett Packard Enterprise authorized service provider will
determine whether a repair can be accomplished by CSR.

For more information about CSR, contact your local service provider or go to the CSR website:

www.hpe.com/support/selfrepair

Remote support
Remote support is available with supported devices as part of your warranty or contractual support
agreement. It provides intelligent event diagnosis, and automatic, secure submission of hardware event
notifications to Hewlett Packard Enterprise, which will initiate a fast and accurate resolution based on your
product’s service level. Hewlett Packard Enterprise strongly recommends that you register your device for
remote support.

For more information and device support details, go to the following website:

www.hpe.com/info/insightremotesupport/docs

Documentation feedback
Hewlett Packard Enterprise is committed to providing documentation that meets your needs. To help us
improve the documentation, send any errors, suggestions, or comments to Documentation Feedback
(docsfeedback@hpe.com). When submitting your feedback, include the document title, part number, edition,
and publication date located on the front cover of the document. For online help content, include the product
name, product version, help edition, and publication date located on the legal notices page.

Customer self repair 247



Command Assignments
The following lists the commands defined in this specification and the minimum privilege level required to
execute a given command. In addition, the following apply:

• Unless otherwise specified, unauthenticated, session-less interfaces, such as the System Interface and
IPMB, can support any IPMI command.

• The privilege level requirements for OEM commands (NetFn=OEM, OEM/Group) is specified by the OEM
identified by the corresponding manufacturer ID.

• Note that the

Send Message
and

Master Write-Read
commands are not available at the User privilege level, with the exception of using a

Send Message
command to deliver a message to the System Interface. This is because these commands enable
unfiltered access the IPMB, ICMB, private management busses, and PCI Management Bus. This would
potentially allow someone to use those commands to send commands to other controllers or write to non-
intelligent devices on those busses. As a consequence, a User is only able to read FRU and sensors
directly managed by the MC. In addition, FRU must be accessed via the

Read FRU
command and not

Master Write-Read
.

• The

Send Message
command can be used to deliver a message to the System Interface at User privilege level. It is up to the
system software to determine the privilege level and place any additional restrictions on messages
received via the Receive Message Queue. This can be accomplished by using the session handle
associated with the message and the

Get Session Info
command to look up the privilege level that the user is operating at. Software can also check the limits for
the channel and the user by using information from the

Get Channel Access
and

Get User Access
commands to determine whether a given user has sufficient privilege to deliver a particular command to
system software.

Unless otherwise specified, the listed IPMI commands, if supported, must be accessible via LUN 00b.

Key for the following iLO command number assignments and privilege levels table

• b = Command only generated by MC, can be sent prior to a session being established
• b1 = Command only generated by MC, can only be delivered to a session-less channel, or a channel that

has an active session

248  Command Assignments



• b2 = Command only generated by MC, can be sent to a serial channel when serial port sharing is used
and activating the SOL payload causes the serial session to be terminated.

• b3 = Command only generated by MC, can only be delivered to a session-less channel.
• p = Works at any privilege level, can be sent prior to a session being established
• s = Command executable via system interface only
• X = Supported at given privilege level or higher
• I = Command executable from local interfaces only (e.g. IPMB, SMBus, PCI Mgmt. bus or System

Interface)
• C = Callback privilege
• U = User Privilege level
• O = Operator Privilege level
• A = Administrator Privilege level
• App = Application Network Function Code
• S/E = Sensor/Event Network Function Code
• - = Reserved/unassigned, or OEM specified

Table 147: iLO command number assignments and privilege levels

NetFn CMD C U O A

IPM Device “Global” Commands

Get Device ID App 01h X

Broadcast ‘Get Device ID’1 App 01h I I I I

Cold Reset App 02h X

Warm Reset App 03h X

Get Self Test Results App 04h X

Get ACPI Power State App 07h X

MC Watchdog Timer Commands

Reset Watchdog Timer App 22h X

Set Watchdog Timer App 24h X

Get Watchdog Timer App 25h X

MC Device and Messaging Commands

Set BMC Global Enables App 2Eh s s s s

Get BMC Global Enables App 2Fh X

Clear Message Flags App 30h s s s s

Get Message Flags App 31h s s s s

Table Continued

Command Assignments 249



NetFn CMD C U O A

Enable Message Channel Receive App 32h s s s s

Get Message App 33h s s s s

Send Message App 34h X2 X

Get System GUID App 37h p3 p3 p3 p3

Set System Info Parameters App 58h X

Get System Info Parameters App 59h X

Set Session Privilege Level App 3Bh X4

Close Session App 3Ch X5

Get Session Info App 3Dh X

Get AuthCode App 3Fh X

Set Channel Access App 40h X

Get Channel Access App 41h X

Get Channel Info App 42h X

Set User Access App 43h X

Get User Access App 44h X

Set User Name App 45h X

Get User Name App 46h X

Set User Password App 47h X

Activate Payload App 48h X5 [1
0]

[1
0]

[1
0]

Deactivate Payload App 49h X5 [1
0]

[1
0]

[1
0]

Get Payload Activation Status App 4Ah X

Get Payload Instance Info App 4Bh X

Set User Payload Access App 4Ch X

Get User Payload Access App 4Dh X

Get Channel Payload Support App 4Eh X

Table Continued

250 Command Assignments



NetFn CMD C U O A

Get Channel Payload Version App 4Fh X

Master Write-Read App 52h X

Get Channel Cipher Suites App 54h p p p p

Suspend/Resume Payload Encryption App 55h X9

Set Channel Security Keys App 56h X

Get System Interface Capabilities App 57h X

Chassis Device Commands

Get Chassis Capabilities Chassis 00h X

Get Chassis Status Chassis 01h X

Chassis Control Chassis 02h X

Chassis Identify Chassis 04h X

Set Power Restore Policy Chassis 06h X

Set System Boot Options Chassis 08h X6

Get System Boot Options Chassis 09h X

unassigned Chassis 0Ch-0
Eh

- - - -

Get POH Counter Chassis 0Fh X

Event Commands

Set Event Receiver S/E 00h X

Get Event Receiver S/E 01h X

Platform Event (a.k.a. “Event Message”) S/E 02h X

unassigned S/E 03h-

0Fh

- - - -

Sensor Device Commands

Get Device SDR Info S/E 20h I I I I

Get Device SDR S/E 21h I I I I

Reserve Device SDR Repository

Table Continued

Command Assignments 251



NetFn CMD C U O A

Get Sensor Reading S/E 2Dh X

FRU Device Commands

Get FRU Inventory Area Info Storage 10h X

Read FRU Data Storage 11h X

Write FRU Data Storage 12h X

SDR Device Commands

Get SDR Repository Info Storage 20h X

Get SDR Repository Allocation Info Storage 21h X

Reserve SDR Repository Storage 22h X

Get SDR Storage 23h X

Add SDR Storage 24h X

Delete SDR Storage 26h X

Clear SDR Repository Storage 27h X

Run Initialization Agent Storage 2Ch X

SEL Device Commands

Get SEL Info Storage 40h X

Reserve SEL Storage 42h X

Get SEL Entry Storage 43h X

Add SEL Entry Storage 44h X

Clear SEL Storage 47h X

Get SEL Time Storage 48h X

Set SEL Time Storage 49h X

LAN Device Commands

Set LAN Configuration Parameters Transport 01h X

Get LAN Configuration Parameters Transport 02h X

Serial/Modem Device Commands

Table Continued

252 Command Assignments



NetFn CMD C U O A

Set SOL Configuration Parameters Transport 21h X

Get SOL Configuration Parameters Transport 22h X

DCMI Specific

Get DCMI Capability Info DCGRP
(2ch)

01h X

Get Asset Tag DCGRP
(2ch)

06h X

Get DCMI Sensor Info DCGRP
(2ch)

07h X

Set Asset Tag DCGRP
(2ch)

08h X

Get Controller ID String DCGRP
(2ch)

09h X

Set Controller ID String DCGRP
(2ch)

0Ah X

PICMG Specific

Get PICMG Properties PICMG
(00h)

00h X

Get Address Info PICMG
(00h)

01h X

FRU Inventory Device Lock Control PICMG
(00h)

1Fh X

1 This command is sent using the Broadcast format on IPMB. See command description for details.
2 A User can use a Send Message command to deliver a message to system software, but Operator
privilege is required to use it to access other channels.
3 Command only applies to authenticated channels.
4 This is effectively a no-op if the user has a maximum privilege limit of User since the command could not be
used to change the operating privilege level to a higher value.
5 A session operating at Callback, User, or Operator can only use this command to terminate their own
session. An Administrator or system software can use the command to terminate any session.
6 There is a bit in this command that can only be set at Administrator privilege level
7 Command available for all levels except for User level.
8 See [ICMB] specification for command specifications
9 The Suspend/Resume Payload Encryption command may be overridden by a configuration option for the
particular payload type that forces encryption to be used. In this case, an Admin level command would
typically be required to change the configuration.

Command Assignments 253



10 The configuration parameters for a given payload type determine the privilege level required to activate/
deactivate the payload.

254 Command Assignments



Verbose output examples
Example using the fru print -v command

root@MFIKE-LX:~# ipmitool -I lanplus -H 15.214.36.129 -U admin -P admin123 fru 
print -v
FRU Device Description : Builtin FRU Device (ID 0)
 Board Mfg Date        : Tue Dec 31 16:00:00 2013
 Board Mfg             : HP
 Board Product         : ProLiant SL4540 Gen8 
 Board Serial          : MemErrorSerNbr  
 Board Part Number     :                 
 Product Manufacturer  : HP
 Product Name          : ProLiant SL4540 Gen8 
 Product Part Number   :                 
 Product Serial        : MemErrorSerNbr  

FRU Device Description : BMC CONTROLLER (ID 238)
 Product Manufacturer  : HP
 Product Name          : BMC CONTROLLER
 Product Part Number   : iLO 4

FRU Device Description : MB BIOS (ID 239)
 Product Manufacturer  : HP
 Product Name          : SYSTEM BIOS
 Product Part Number   : P74
 Product Version       : 11/01/2014

FRU Device Description : CPU 1 (ID 16)
 Product Manufacturer  : Intel
 Product Name          :  Intel(R) Xeon(R) CPU E5-2450 0 @ 2.10GHz       

FRU Device Description : CPU 2 (ID 17)
 Product Manufacturer  : Intel
 Product Name          :  Intel(R) Xeon(R) CPU E5-2450 0 @ 2.10GHz       

FRU Device Description : CPU 1 DIMM 4 (ID 110)
 Memory Type           : DDR3 SDRAM
 SDRAM Capacity        : 2048 MB
 Memory Banks          : 3 (8 Banks)
 Primary Bus Width     : 64 bits
 SDRAM Device Width    : 4 bits
 Number of Ranks       : 1
 Memory size           : 4096 MB
 1.5 V Nominal Op      : Yes
 1.35 V Nominal Op     : No
 1.2X V Nominal Op     : Yes
 Error Detect/Cor      : 8 bits
 Manufacturer          : Hewlett-Packard
 Manufacture Date      : year 11 week 39
 Serial Number         : 0d43e3b4
 Part Number           : HMT351R7BFR4A-H9  T

SPD DATA (256 bytes)
 92 10 0b 01 03 1a 02 00 0b 52 01 08 0c 00 3c 00

Verbose output examples 255



 69 78 69 30 69 11 20 89 00 05 3c 3c 00 f0 83 05
 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 0f 11 02 05
 00 04 b3 21 00 00 50 55 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 54 01 11 39 0d 43 e3 b4 ed 51
 48 4d 54 33 35 31 52 37 42 46 52 34 41 2d 48 39
 20 20 54 33 00 54 00 54 4e 31 41 51 34 31 35 30
 49 30 32 00 01 03 02 04 02 02 00 04 00 00 00 00
 48 50 54 00 e4 73 82 10 00 00 00 00 00 00 24 0e
 11 03 4d 65 6d 45 72 72 6f 72 53 65 0e 11 07 c7
 01 00 04 01 00 00 00 12 00 ff 00 00 00 00 ec 18
 f2 ff ff ff ff ff 00 e1 1b ff ff ff ff ff ff f2
 01 00 00 00 ff ff ff ff ff ff ff ff ff ff 00 00

FRU Device Description : CPU 1 DIMM 6 (ID 111)
 Memory Type           : DDR3 SDRAM
 SDRAM Capacity        : 2048 MB
 Memory Banks          : 3 (8 Banks)
 Primary Bus Width     : 64 bits
 SDRAM Device Width    : 4 bits
 Number of Ranks       : 1
 Memory size           : 4096 MB
 1.5 V Nominal Op      : Yes
 1.35 V Nominal Op     : No
 1.2X V Nominal Op     : Yes
 Error Detect/Cor      : 8 bits
 Manufacturer          : Hewlett-Packard
 Manufacture Date      : year 11 week 39
 Serial Number         : 0d53e3a6
 Part Number           : HMT351R7BFR4A-H9  T

SPD DATA (256 bytes)
 92 10 0b 01 03 1a 02 00 0b 52 01 08 0c 00 3c 00
 69 78 69 30 69 11 20 89 00 05 3c 3c 00 f0 83 05
 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 0f 11 02 05
 00 04 b3 21 00 00 50 55 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 54 01 11 39 0d 53 e3 a6 ed 51
 48 4d 54 33 35 31 52 37 42 46 52 34 41 2d 48 39
 20 20 54 33 00 54 00 54 4e 31 41 51 34 31 35 30
 49 30 32 00 01 03 02 04 02 02 00 04 00 00 00 00
 48 50 54 00 29 87 4e 22 00 00 00 00 00 00 24 0e
 11 03 ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 ff ff ff 00 00 00 00 ff ff ff 00 00 00 00 ff ff
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 00 00 00 00 ff ff ff ff ff ff ff ff ff ff 00 00

FRU Device Description : CPU 2 DIMM 4 (ID 112)
 Memory Type           : DDR3 SDRAM
 SDRAM Capacity        : 2048 MB
 Memory Banks          : 3 (8 Banks)
 Primary Bus Width     : 64 bits
 SDRAM Device Width    : 4 bits

256 Verbose output examples



 Number of Ranks       : 1
 Memory size           : 4096 MB
 1.5 V Nominal Op      : Yes
 1.35 V Nominal Op     : No
 1.2X V Nominal Op     : Yes
 Error Detect/Cor      : 8 bits
 Manufacturer          : Hewlett-Packard
 Manufacture Date      : year 11 week 39
 Serial Number         : 0d43e3cf
 Part Number           : HMT351R7BFR4A-H9  T

SPD DATA (256 bytes)
 92 10 0b 01 03 1a 02 00 0b 52 01 08 0c 00 3c 00
 69 78 69 30 69 11 20 89 00 05 3c 3c 00 f0 83 05
 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 0f 11 02 05
 00 04 b3 21 00 00 50 55 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 54 01 11 39 0d 43 e3 cf ed 51
 48 4d 54 33 35 31 52 37 42 46 52 34 41 2d 48 39
 20 20 54 33 00 54 00 54 4e 31 41 51 34 31 35 30
 49 30 32 00 01 03 02 04 02 02 00 04 00 00 00 00
 48 50 54 00 b5 8f a2 23 00 00 00 00 00 00 24 0e
 11 03 ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 ff ff ff 00 00 00 00 ff ff ff 00 00 00 00 ff ff
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 00 00 00 00 ff ff ff ff ff ff ff ff ff ff 00 00

FRU Device Description : CPU 2 DIMM 6 (ID 113)
 Memory Type           : DDR3 SDRAM
 SDRAM Capacity        : 2048 MB
 Memory Banks          : 3 (8 Banks)
 Primary Bus Width     : 64 bits
 SDRAM Device Width    : 4 bits
 Number of Ranks       : 1
 Memory size           : 4096 MB
 1.5 V Nominal Op      : Yes
 1.35 V Nominal Op     : No
 1.2X V Nominal Op     : Yes
 Error Detect/Cor      : 8 bits
 Manufacturer          : Hewlett-Packard
 Manufacture Date      : year 11 week 39
 Serial Number         : 0d83e3d0
 Part Number           : HMT351R7BFR4A-H9  T

SPD DATA (256 bytes)
 92 10 0b 01 03 1a 02 00 0b 52 01 08 0c 00 3c 00
 69 78 69 30 69 11 20 89 00 05 3c 3c 00 f0 83 05
 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 0f 11 02 05
 00 04 b3 21 00 00 50 55 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 54 01 11 39 0d 83 e3 d0 ed 51
 48 4d 54 33 35 31 52 37 42 46 52 34 41 2d 48 39
 20 20 54 33 00 54 00 54 4e 31 41 51 34 31 35 30

Verbose output examples 257



 49 30 32 00 01 03 02 04 02 02 00 04 00 00 00 00
 48 50 54 00 4e c8 61 fe 00 00 00 00 00 00 24 0e
 11 03 ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 ff ff ff 00 00 00 00 ff ff ff 00 00 00 00 ff ff
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 00 00 00 00 ff ff ff ff ff ff ff ff ff ff 00 00

FRU Device Description : ChasMgmtCtlr1   
 Unknown FRU header version 0x00

FRU Device Description : PsMgmtCtlr1     
 Board Mfg Date        : Sat Oct 29 06:39:00 2011
 Board Part Number     : 660183-001
 Board FRU ID          : 04/21/11
 Product Manufacturer  : HP 0
 Product Name          : HP POWER SUPPLY           
 Product Part Number   : 656363-B21
 Product Version       : 01
 Product Serial        : 5BXRB0B4D1L0TJ
 Power Supply Record
  Capacity                   : 750 W
  Peak VA                    : 900 VA
  Inrush Current             : 30 A
  Inrush Interval            : 5 ms
  Input Voltage Range 1      : 90-132 V
  Input Voltage Range 2      : 180-264 V
  Input Frequency Range      : 47-63 Hz
  A/C Dropout Tolerance      : 10 ms
  Flags                      : 'Power factor correction' 'Hot swap' 
  Peak capacity              : 900 W
  Peak capacity holdup       : 1 s
  Combined capacity          : not specified
 DC Output Record
  Output Number              : 1
  Standby power              : No
  Nominal voltage            : 12.30 V
  Max negative deviation     : 11.60 V
  Max positive deviation     : 12.60 V
  Ripple and noise pk-pk     : 120 mV
  Minimum current draw       : 0.100 A
  Maximum current draw       : 6.250 A
 DC Output Record
  Output Number              : 2
  Standby power              : Yes
  Nominal voltage            : 12.00 V
  Max negative deviation     : 10.80 V
  Max positive deviation     : 13.20 V
  Ripple and noise pk-pk     : 120 mV
  Minimum current draw       : 0.000 A
  Maximum current draw       : 0.250 A

FRU Device Description : PsMgmtCtlr2     
 Board Mfg Date        : Tue Oct 30 11:53:00 2012
 Board Part Number     : 660183-001
 Board FRU ID          : 04/21/11
 Product Manufacturer  : HP 2
 Product Name          : HP POWER SUPPLY           

258 Verbose output examples



 Product Part Number   : 656363-B21
 Product Version       : 03
 Product Serial        : 5BXRF0BLL3X4KU
 Power Supply Record
  Capacity                   : 750 W
  Peak VA                    : 900 VA
  Inrush Current             : 30 A
  Inrush Interval            : 5 ms
  Input Voltage Range 1      : 90-132 V
  Input Voltage Range 2      : 180-264 V
  Input Frequency Range      : 47-63 Hz
  A/C Dropout Tolerance      : 10 ms
  Flags                      : 'Power factor correction' 'Hot swap' 
  Peak capacity              : 900 W
  Peak capacity holdup       : 1 s
  Combined capacity          : not specified
 DC Output Record
  Output Number              : 1
  Standby power              : No
  Nominal voltage            : 12.30 V
  Max negative deviation     : 11.60 V
  Max positive deviation     : 12.60 V
  Ripple and noise pk-pk     : 120 mV
  Minimum current draw       : 0.100 A
  Maximum current draw       : 6.250 A
 DC Output Record
  Output Number              : 2
  Standby power              : Yes
  Nominal voltage            : 12.00 V
  Max negative deviation     : 10.80 V
  Max positive deviation     : 13.20 V
  Ripple and noise pk-pk     : 120 mV
  Minimum current draw       : 0.000 A
  Maximum current draw       : 0.250 A

FRU Device Description : PsMgmtCtlr3     
 Device not present (Destination unavailable)

FRU Device Description : PsMgmtCtlr4     
 Board Mfg Date        : Sat Oct 29 06:40:00 2011
 Board Part Number     : 660183-001
 Board FRU ID          : 04/21/11
 Product Manufacturer  : HP 0
 Product Name          : HP POWER SUPPLY           
 Product Part Number   : 656363-B21
 Product Version       : 01
 Product Serial        : 5BXRB0B4D1L0TN
 Power Supply Record
  Capacity                   : 750 W
  Peak VA                    : 900 VA
  Inrush Current             : 30 A
  Inrush Interval            : 5 ms
  Input Voltage Range 1      : 90-132 V
  Input Voltage Range 2      : 180-264 V
  Input Frequency Range      : 47-63 Hz
  A/C Dropout Tolerance      : 10 ms
  Flags                      : 'Power factor correction' 'Hot swap' 

Verbose output examples 259



  Peak capacity              : 900 W
  Peak capacity holdup       : 1 s
  Combined capacity          : not specified
 DC Output Record
  Output Number              : 1
  Standby power              : No
  Nominal voltage            : 12.30 V
  Max negative deviation     : 11.60 V
  Max positive deviation     : 12.60 V
  Ripple and noise pk-pk     : 120 mV
  Minimum current draw       : 0.100 A
  Maximum current draw       : 6.250 A
 DC Output Record
  Output Number              : 2
  Standby power              : Yes
  Nominal voltage            : 12.00 V
  Max negative deviation     : 10.80 V
  Max positive deviation     : 13.20 V
  Ripple and noise pk-pk     : 120 mV
  Minimum current draw       : 0.000 A
  Maximum current draw       : 0.250 A

root@MFIKE-LX:~#

Example using the sdr list all -v command

root@MFIKE-LX:~# ipmitool -I lanplus -H 15.214.36.129 -U admin -P admin123 sdr 
list all -v
Sensor ID              : UID Light (0x1)
 Entity ID             : 7.1 (System Board)
 Sensor Type (Discrete): Unknown (0xC0) (0xc0)
 Sensor Reading        : 0h
 Event Message Control : Global Disable Only
 OEM                   : 1

Sensor ID              : Health LED (0x2)
 Entity ID             : 7.1 (System Board)
 Sensor Type (Discrete): Unknown (0xC0) (0xc0)
 Sensor Reading        : 0h
 Event Message Control : Global Disable Only
 OEM                   : 1

Sensor ID              : 01-Inlet Ambient (0x3)
 Entity ID             : 64.1 (Air Inlet)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : 21 (+/- 0) degrees C
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : Global Disable Only
 Readable Thresholds   : ucr unr 
 Settable Thresholds   : 
 Threshold Read Mask   : ucr unr 
 Assertions Enabled    : ucr+ unr+ 

260 Verbose output examples



Sensor ID              : 02-CPU 1 (0x4)
 Entity ID             : 65.1 (Processor)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : 40 (+/- 0) degrees C
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : 70.000
 Maximum sensor range  : Unspecified
 Event Message Control : Global Disable Only
 Readable Thresholds   : ucr 
 Settable Thresholds   : 
 Threshold Read Mask   : ucr 
 Assertions Enabled    : ucr+ 

Sensor ID              : 03-CPU 2 (0x5)
 Entity ID             : 65.2 (Processor)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : 40 (+/- 0) degrees C
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : 70.000
 Maximum sensor range  : Unspecified
 Event Message Control : Global Disable Only
 Readable Thresholds   : ucr 
 Settable Thresholds   : 
 Threshold Read Mask   : ucr 
 Assertions Enabled    : ucr+ 

Sensor ID              : 04-DIMM P1 1-3 (0x6)
 Entity ID             : 32.1 (Memory Device)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : Disabled
 Status                : Not Available
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : Global Disable Only
 Readable Thresholds   : ucr 
 Settable Thresholds   : 
 Threshold Read Mask   : ucr 
 Assertions Enabled    : ucr+ 

Sensor ID              : 05-DIMM P1 4-6 (0x7)
 Entity ID             : 32.2 (Memory Device)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : 26 (+/- 0) degrees C
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : Global Disable Only
 Readable Thresholds   : ucr 

Verbose output examples 261



 Settable Thresholds   : 
 Threshold Read Mask   : ucr 
 Assertions Enabled    : ucr+ 

Sensor ID              : 06-DIMM P2 1-3 (0x8)
 Entity ID             : 32.3 (Memory Device)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : Disabled
 Status                : Not Available
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : Global Disable Only
 Readable Thresholds   : ucr 
 Settable Thresholds   : 
 Threshold Read Mask   : ucr 
 Assertions Enabled    : ucr+ 

Sensor ID              : 07-DIMM P2 4-6 (0x9)
 Entity ID             : 32.4 (Memory Device)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : 22 (+/- 0) degrees C
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : Global Disable Only
 Readable Thresholds   : ucr 
 Settable Thresholds   : 
 Threshold Read Mask   : ucr 
 Assertions Enabled    : ucr+ 

Sensor ID              : 08-HD Max (0xa)
 Entity ID             : 4.1 (Disk or Disk Bay)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : 35 (+/- 0) degrees C
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : 35.000
 Maximum sensor range  : Unspecified
 Event Message Control : Global Disable Only
 Readable Thresholds   : ucr 
 Settable Thresholds   : 
 Threshold Read Mask   : ucr 

Sensor ID              : 09-Chipset (0xb)
 Entity ID             : 66.1 (Baseboard/Main System Board)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : 44 (+/- 0) degrees C
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified

262 Verbose output examples



 Event Message Control : Global Disable Only
 Readable Thresholds   : ucr 
 Settable Thresholds   : 
 Threshold Read Mask   : ucr 
 Assertions Enabled    : ucr+ 

Sensor ID              : 10-VR P1 (0xc)
 Entity ID             : 19.2 (Power Unit)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : 28 (+/- 0) degrees C
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : Global Disable Only
 Readable Thresholds   : ucr unr 
 Settable Thresholds   : 
 Threshold Read Mask   : ucr unr 
 Assertions Enabled    : ucr+ unr+ 

Sensor ID              : 11-VR P2 (0xd)
 Entity ID             : 19.3 (Power Unit)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : 29 (+/- 0) degrees C
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : Global Disable Only
 Readable Thresholds   : ucr unr 
 Settable Thresholds   : 
 Threshold Read Mask   : ucr unr 
 Assertions Enabled    : ucr+ unr+ 

Sensor ID              : 12-VR P1 Zone (0xe)
 Entity ID             : 66.2 (Baseboard/Main System Board)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : 27 (+/- 0) degrees C
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : Global Disable Only
 Readable Thresholds   : ucr unr 
 Settable Thresholds   : 
 Threshold Read Mask   : ucr unr 
 Assertions Enabled    : ucr+ unr+ 

Sensor ID              : 13-VR P2 Zone (0xf)
 Entity ID             : 66.3 (Baseboard/Main System Board)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : 29 (+/- 0) degrees C
 Status                : ok
 Positive Hysteresis   : Unspecified

Verbose output examples 263



 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : Global Disable Only
 Readable Thresholds   : ucr unr 
 Settable Thresholds   : 
 Threshold Read Mask   : ucr unr 
 Assertions Enabled    : ucr+ unr+ 

Sensor ID              : 14-VR P1 Mem (0x10)
 Entity ID             : 19.4 (Power Unit)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : 30 (+/- 0) degrees C
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : Global Disable Only
 Readable Thresholds   : ucr unr 
 Settable Thresholds   : 
 Threshold Read Mask   : ucr unr 
 Assertions Enabled    : ucr+ unr+ 

Sensor ID              : 15-VR P2 Mem (0x11)
 Entity ID             : 19.5 (Power Unit)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : 26 (+/- 0) degrees C
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : Global Disable Only
 Readable Thresholds   : ucr unr 
 Settable Thresholds   : 
 Threshold Read Mask   : ucr unr 
 Assertions Enabled    : ucr+ unr+ 

Sensor ID              : 16-VR P1Mem Zone (0x12)
 Entity ID             : 66.4 (Baseboard/Main System Board)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : 29 (+/- 0) degrees C
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : Global Disable Only
 Readable Thresholds   : ucr unr 
 Settable Thresholds   : 
 Threshold Read Mask   : ucr unr 
 Assertions Enabled    : ucr+ unr+ 

Sensor ID              : 17-VR P2Mem Zone (0x13)
 Entity ID             : 66.5 (Baseboard/Main System Board)
 Sensor Type (Threshold)  : Temperature (0x01)

264 Verbose output examples



 Sensor Reading        : 25 (+/- 0) degrees C
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : Global Disable Only
 Readable Thresholds   : ucr unr 
 Settable Thresholds   : 
 Threshold Read Mask   : ucr unr 
 Assertions Enabled    : ucr+ unr+ 

Sensor ID              : 18-HD Controller (0x14)
 Entity ID             : 11.1 (Add-in Card)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : 52 (+/- 0) degrees C
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : 40.000
 Maximum sensor range  : Unspecified
 Event Message Control : Global Disable Only
 Readable Thresholds   : ucr 
 Settable Thresholds   : 
 Threshold Read Mask   : ucr 
 Assertions Enabled    : ucr+ 

Sensor ID              : 19-Supercap (0x15)
 Entity ID             : 40.1 (Battery)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : 26 (+/- 0) degrees C
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : Global Disable Only
 Readable Thresholds   : ucr 
 Settable Thresholds   : 
 Threshold Read Mask   : ucr 
 Assertions Enabled    : ucr+ 

Sensor ID              : 20-PCI (0x16)
 Entity ID             : 11.2 (Add-in Card)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : Disabled
 Status                : Not Available
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : 40.000
 Maximum sensor range  : Unspecified
 Event Message Control : Global Disable Only
 Readable Thresholds   : ucr 
 Settable Thresholds   : 
 Threshold Read Mask   : ucr 
 Assertions Enabled    : ucr+ 

Verbose output examples 265



Sensor ID              : 21-PCI Zone (0x17)
 Entity ID             : 66.6 (Baseboard/Main System Board)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : 31 (+/- 0) degrees C
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : Global Disable Only
 Readable Thresholds   : ucr unr 
 Settable Thresholds   : 
 Threshold Read Mask   : ucr unr 
 Assertions Enabled    : ucr+ unr+ 

Sensor ID              : 22-LOM (0x18)
 Entity ID             : 11.3 (Add-in Card)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : Disabled
 Status                : Not Available
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : 40.000
 Maximum sensor range  : Unspecified
 Event Message Control : Global Disable Only
 Readable Thresholds   : ucr 
 Settable Thresholds   : 
 Threshold Read Mask   : ucr 
 Assertions Enabled    : ucr+ 

Sensor ID              : 23-I/O 1 Zone (0x19)
 Entity ID             : 24.1 (Sub-Chassis)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : Disabled
 Status                : Not Available
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : Global Disable Only
 Readable Thresholds   : ucr unr 
 Settable Thresholds   : 
 Threshold Read Mask   : ucr unr 
 Assertions Enabled    : ucr+ unr+ 

Sensor ID              : 24-I/O 2 Zone (0x1a)
 Entity ID             : 24.2 (Sub-Chassis)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : Disabled
 Status                : Not Available
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : Global Disable Only
 Readable Thresholds   : ucr unr 
 Settable Thresholds   : 

266 Verbose output examples



 Threshold Read Mask   : ucr unr 
 Assertions Enabled    : ucr+ unr+ 

Sensor ID              : 25-I/O 3 Zone (0x1b)
 Entity ID             : 24.3 (Sub-Chassis)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : Disabled
 Status                : Not Available
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : Global Disable Only
 Readable Thresholds   : ucr unr 
 Settable Thresholds   : 
 Threshold Read Mask   : ucr unr 
 Assertions Enabled    : ucr+ unr+ 

Sensor ID              : 26-I/O LOM (0x1c)
 Entity ID             : 24.4 (Sub-Chassis)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : Disabled
 Status                : Not Available
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : 40.000
 Maximum sensor range  : Unspecified
 Event Message Control : Global Disable Only
 Readable Thresholds   : ucr 
 Settable Thresholds   : 
 Threshold Read Mask   : ucr 
 Assertions Enabled    : ucr+ 

Sensor ID              : 27-Sys Exhaust (0x1d)
 Entity ID             : 66.7 (Baseboard/Main System Board)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : 31 (+/- 0) degrees C
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : Global Disable Only
 Readable Thresholds   : ucr unr 
 Settable Thresholds   : 
 Threshold Read Mask   : ucr unr 
 Assertions Enabled    : ucr+ unr+ 

Sensor ID              : Fan 1 (0x1e)
 Entity ID             : 29.1 (Fan Device)
 Sensor Type (Discrete): Fan (0x04)
 Sensor Reading        : 36.85 percent
 Event Message Control : Global Disable Only
 States Asserted       : Availability State
                         [Transition to Running]
 OEM                   : 1

Verbose output examples 267



Sensor ID              : Fan 2 (0x1f)
 Entity ID             : 29.2 (Fan Device)
 Sensor Type (Discrete): Fan (0x04)
 Sensor Reading        : 36.85 percent
 Event Message Control : Global Disable Only
 States Asserted       : Availability State
                         [Transition to Running]
 OEM                   : 2

Sensor ID              : Fan 3 (0x20)
 Entity ID             : 29.3 (Fan Device)
 Sensor Type (Discrete): Fan (0x04)
 Sensor Reading        : 36.85 percent
 Event Message Control : Global Disable Only
 States Asserted       : Availability State
                         [Transition to Running]
 OEM                   : 3

Sensor ID              : Fan 4 (0x21)
 Entity ID             : 29.4 (Fan Device)
 Sensor Type (Discrete): Fan (0x04)
 Sensor Reading        : 36.85 percent
 Event Message Control : Global Disable Only
 States Asserted       : Availability State
                         [Transition to Running]
 OEM                   : 4

Sensor ID              : Fan 5 (0x22)
 Entity ID             : 29.5 (Fan Device)
 Sensor Type (Discrete): Fan (0x04)
 Sensor Reading        : 36.85 percent
 Event Message Control : Global Disable Only
 States Asserted       : Availability State
                         [Transition to Running]
 OEM                   : 5

Sensor ID              : Fan 6 (0x23)
 Entity ID             : 29.6 (Fan Device)
 Sensor Type (Discrete): Fan (0x04)
 Sensor Reading        : 36.85 percent
 Event Message Control : Global Disable Only
 States Asserted       : Availability State
                         [Transition to Running]
 OEM                   : 6

Sensor ID              : Fan 7 (0x24)
 Entity ID             : 29.7 (Fan Device)
 Sensor Type (Discrete): Fan (0x04)
 Sensor Reading        : 36.85 percent
 Event Message Control : Global Disable Only
 States Asserted       : Availability State
                         [Transition to Running]
 OEM                   : 7

Sensor ID              : Fan 8 (0x25)
 Entity ID             : 29.8 (Fan Device)
 Sensor Type (Discrete): Fan (0x04)

268 Verbose output examples



 Sensor Reading        : 36.85 percent
 Event Message Control : Global Disable Only
 States Asserted       : Availability State
                         [Transition to Running]
 OEM                   : 8

Sensor ID              : Fan 9 (0x26)
 Entity ID             : 29.9 (Fan Device)
 Sensor Type (Discrete): Fan (0x04)
 Sensor Reading        : 36.85 percent
 Event Message Control : Global Disable Only
 States Asserted       : Availability State
                         [Transition to Running]
 OEM                   : 9

Sensor ID              : Fan 10 (0x27)
 Entity ID             : 29.10 (Fan Device)
 Sensor Type (Discrete): Fan (0x04)
 Sensor Reading        : 36.85 percent
 Event Message Control : Global Disable Only
 States Asserted       : Availability State
                         [Transition to Running]
 OEM                   : A

Sensor ID              : Power Supply 1 (0x28)
 Entity ID             : 10.1 (Power Supply)
 Sensor Type (Discrete): Power Supply (0x08)
 Sensor Reading        : 750 Watts
 Event Message Control : Global Disable Only
 States Asserted       : Power Supply
                         [Presence detected]
 OEM                   : 1

Sensor ID              : Power Supply 2 (0x29)
 Entity ID             : 10.2 (Power Supply)
 Sensor Type (Discrete): Power Supply (0x08)
 Sensor Reading        : 750 Watts
 Event Message Control : Global Disable Only
 States Asserted       : Power Supply
                         [Presence detected]
 OEM                   : 2

Sensor ID              : Power Supply 3 (0x2a)
 Entity ID             : 10.3 (Power Supply)
 Sensor Type (Discrete): Power Supply (0x08)
 Sensor Reading        : Disabled
 Event Message Control : Global Disable Only
 OEM                   : 3

Sensor ID              : Power Supply 4 (0x2b)
 Entity ID             : 10.4 (Power Supply)
 Sensor Type (Discrete): Power Supply (0x08)
 Sensor Reading        : 750 Watts
 Event Message Control : Global Disable Only
 States Asserted       : Power Supply
                         [Presence detected]
 OEM                   : 4

Verbose output examples 269



Sensor ID              : Fans (0x2c)
 Entity ID             : 30.1 (Cooling Unit)
 Sensor Type (Discrete): Fan (0x04)
 Sensor Reading        : 0h
 Event Message Control : Global Disable Only
 States Asserted       : Redundancy State
                         [Fully Redundant]
 OEM                   : 0

Sensor ID              : PS1 Fan Speed (0x2d)
 Entity ID             : 10.1 (Power Supply)
 Sensor Type (Threshold)  : Fan (0x04)
 Sensor Reading        : 1792 (+/- 0) RPM
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : PS2 Fan Speed (0x2e)
 Entity ID             : 10.2 (Power Supply)
 Sensor Type (Threshold)  : Fan (0x04)
 Sensor Reading        : 1280 (+/- 0) RPM
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : PS3 Fan Speed (0x2f)
 Entity ID             : 10.3 (Power Supply)
 Sensor Type (Threshold)  : Fan (0x04)
 Sensor Reading        : No Reading
 Status                : Not Available
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : PS4 Fan Speed (0x30)
 Entity ID             : 10.4 (Power Supply)
 Sensor Type (Threshold)  : Fan (0x04)
 Sensor Reading        : 1280 (+/- 0) RPM
 Status                : ok

270 Verbose output examples



 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : PS1 Fan Fail (0x31)
 Entity ID             : 10.1 (Power Supply)
 Sensor Type (Discrete): Fan (0x04)
 Sensor Reading        : 0h
 Event Message Control : No Events From Sensor
 States Asserted       : Digital State
                         [Performance Met]
 OEM                   : 1

Sensor ID              : PS2 Fan Fail (0x32)
 Entity ID             : 10.2 (Power Supply)
 Sensor Type (Discrete): Fan (0x04)
 Sensor Reading        : 0h
 Event Message Control : No Events From Sensor
 States Asserted       : Digital State
                         [Performance Met]
 OEM                   : 2

Sensor ID              : PS3 Fan Fail (0x33)
 Entity ID             : 10.3 (Power Supply)
 Sensor Type (Discrete): Fan (0x04)
 Sensor Reading        : No Reading
 Event Message Control : No Events From Sensor
 OEM                   : 3

Sensor ID              : PS4 Fan Fail (0x34)
 Entity ID             : 10.4 (Power Supply)
 Sensor Type (Discrete): Fan (0x04)
 Sensor Reading        : 0h
 Event Message Control : No Events From Sensor
 States Asserted       : Digital State
                         [Performance Met]
 OEM                   : 4

Sensor ID              : PS1 Intern Temp (0x35)
 Entity ID             : 10.1 (Power Supply)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : 28 (+/- 0) degrees C
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Verbose output examples 271



Sensor ID              : PS2 Intern Temp (0x36)
 Entity ID             : 10.2 (Power Supply)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : 28 (+/- 0) degrees C
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : PS3 Intern Temp (0x37)
 Entity ID             : 10.3 (Power Supply)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : No Reading
 Status                : Not Available
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : PS4 Intern Temp (0x38)
 Entity ID             : 10.4 (Power Supply)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : 32 (+/- 0) degrees C
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : PS1 Inlet Temp (0x39)
 Entity ID             : 10.1 (Power Supply)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : 28 (+/- 0) degrees C
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : PS2 Inlet Temp (0x3a)

272 Verbose output examples



 Entity ID             : 10.2 (Power Supply)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : 32 (+/- 0) degrees C
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : PS3 Inlet Temp (0x3b)
 Entity ID             : 10.3 (Power Supply)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : No Reading
 Status                : Not Available
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : PS4 Inlet Temp (0x3c)
 Entity ID             : 10.4 (Power Supply)
 Sensor Type (Threshold)  : Temperature (0x01)
 Sensor Reading        : 28 (+/- 0) degrees C
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : PS1 Output Pwr (0x3d)
 Entity ID             : 10.1 (Power Supply)
 Sensor Type (Threshold)  : Current (0x03)
 Sensor Reading        : 75 (+/- 0) Watts
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : PS2 Output Pwr (0x3e)
 Entity ID             : 10.2 (Power Supply)

Verbose output examples 273



 Sensor Type (Threshold)  : Current (0x03)
 Sensor Reading        : 45 (+/- 0) Watts
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : PS3 Output Pwr (0x3f)
 Entity ID             : 10.3 (Power Supply)
 Sensor Type (Threshold)  : Current (0x03)
 Sensor Reading        : No Reading
 Status                : Not Available
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : PS4 Output Pwr (0x40)
 Entity ID             : 10.4 (Power Supply)
 Sensor Type (Threshold)  : Current (0x03)
 Sensor Reading        : 65 (+/- 0) Watts
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : PS1 Input Pwr (0x41)
 Entity ID             : 10.1 (Power Supply)
 Sensor Type (Threshold)  : Current (0x03)
 Sensor Reading        : 90 (+/- 0) VA
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : PS2 Input Pwr (0x42)
 Entity ID             : 10.2 (Power Supply)
 Sensor Type (Threshold)  : Current (0x03)

274 Verbose output examples



 Sensor Reading        : 55 (+/- 0) VA
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : PS3 Input Pwr (0x43)
 Entity ID             : 10.3 (Power Supply)
 Sensor Type (Threshold)  : Current (0x03)
 Sensor Reading        : No Reading
 Status                : Not Available
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : PS4 Input Pwr (0x44)
 Entity ID             : 10.4 (Power Supply)
 Sensor Type (Threshold)  : Current (0x03)
 Sensor Reading        : 80 (+/- 0) VA
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : PS1 Input V (0x45)
 Entity ID             : 10.1 (Power Supply)
 Sensor Type (Threshold)  : Voltage (0x02)
 Sensor Reading        : 116 (+/- 0) Volts
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : PS2 Input V (0x46)
 Entity ID             : 10.2 (Power Supply)
 Sensor Type (Threshold)  : Voltage (0x02)
 Sensor Reading        : 116 (+/- 0) Volts

Verbose output examples 275



 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : PS3 Input V (0x47)
 Entity ID             : 10.3 (Power Supply)
 Sensor Type (Threshold)  : Voltage (0x02)
 Sensor Reading        : No Reading
 Status                : Not Available
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : PS4 Input V (0x48)
 Entity ID             : 10.4 (Power Supply)
 Sensor Type (Threshold)  : Voltage (0x02)
 Sensor Reading        : 114 (+/- 0) Volts
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : PS1 Aux Power (0x49)
 Entity ID             : 10.1 (Power Supply)
 Sensor Type (Threshold)  : Current (0x03)
 Sensor Reading        : 0 (+/- 0) Watts
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : PS2 Aux Power (0x4a)
 Entity ID             : 10.2 (Power Supply)
 Sensor Type (Threshold)  : Current (0x03)
 Sensor Reading        : 0 (+/- 0) Watts
 Status                : ok

276 Verbose output examples



 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : PS3 Aux Power (0x4b)
 Entity ID             : 10.3 (Power Supply)
 Sensor Type (Threshold)  : Current (0x03)
 Sensor Reading        : No Reading
 Status                : Not Available
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : PS4 Aux Power (0x4c)
 Entity ID             : 10.4 (Power Supply)
 Sensor Type (Threshold)  : Current (0x03)
 Sensor Reading        : 0 (+/- 0) Watts
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : PS1 Aux V (0x4d)
 Entity ID             : 10.1 (Power Supply)
 Sensor Type (Threshold)  : Voltage (0x02)
 Sensor Reading        : 0 (+/- 0) Volts
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : PS2 Aux V (0x4e)
 Entity ID             : 10.2 (Power Supply)
 Sensor Type (Threshold)  : Voltage (0x02)
 Sensor Reading        : 0 (+/- 0) Volts
 Status                : ok
 Positive Hysteresis   : Unspecified

Verbose output examples 277



 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : PS3 Aux V (0x4f)
 Entity ID             : 10.3 (Power Supply)
 Sensor Type (Threshold)  : Voltage (0x02)
 Sensor Reading        : No Reading
 Status                : Not Available
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : PS4 Aux V (0x50)
 Entity ID             : 10.4 (Power Supply)
 Sensor Type (Threshold)  : Voltage (0x02)
 Sensor Reading        : 0 (+/- 0) Volts
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : PS1 In OutDc Ok (0x51)
 Entity ID             : 10.1 (Power Supply)
 Sensor Type (Discrete): Power Supply (0x08)
 Sensor Reading        : 3h
 Event Message Control : No Events From Sensor
 States Asserted       : Power Supply
                         [Presence detected]
 OEM                   : 1

Sensor ID              : PS2 In OutDc Ok (0x52)
 Entity ID             : 10.2 (Power Supply)
 Sensor Type (Discrete): Power Supply (0x08)
 Sensor Reading        : 3h
 Event Message Control : No Events From Sensor
 States Asserted       : Power Supply
                         [Presence detected]
 OEM                   : 2

Sensor ID              : PS3 In OutDc Ok (0x53)
 Entity ID             : 10.3 (Power Supply)
 Sensor Type (Discrete): Power Supply (0x08)

278 Verbose output examples



 Sensor Reading        : No Reading
 Event Message Control : No Events From Sensor
 OEM                   : 3

Sensor ID              : PS4 In OutDc Ok (0x54)
 Entity ID             : 10.4 (Power Supply)
 Sensor Type (Discrete): Power Supply (0x08)
 Sensor Reading        : 3h
 Event Message Control : No Events From Sensor
 States Asserted       : Power Supply
                         [Presence detected]
 OEM                   : 4

Sensor ID              : PS1 On State (0x55)
 Entity ID             : 10.1 (Power Supply)
 Sensor Type (Discrete): Power Supply (0x08)
 Sensor Reading        : 4h
 Event Message Control : No Events From Sensor
 States Asserted       : Digital State
                         [State Asserted]
 OEM                   : 1

Sensor ID              : PS2 On State (0x56)
 Entity ID             : 10.2 (Power Supply)
 Sensor Type (Discrete): Power Supply (0x08)
 Sensor Reading        : 4h
 Event Message Control : No Events From Sensor
 States Asserted       : Digital State
                         [State Asserted]
 OEM                   : 2

Sensor ID              : PS3 On State (0x57)
 Entity ID             : 10.3 (Power Supply)
 Sensor Type (Discrete): Power Supply (0x08)
 Sensor Reading        : No Reading
 Event Message Control : No Events From Sensor
 OEM                   : 3

Sensor ID              : PS4 On State (0x58)
 Entity ID             : 10.4 (Power Supply)
 Sensor Type (Discrete): Power Supply (0x08)
 Sensor Reading        : 4h
 Event Message Control : No Events From Sensor
 States Asserted       : Digital State
                         [State Asserted]
 OEM                   : 4

Sensor ID              : Total Sys Pwr In (0x59)
 Entity ID             : 19.1 (Power Unit)
 Sensor Type (Threshold)  : Power Supply (0x08)
 Sensor Reading        : 230 (+/- 0) Watts
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor

Verbose output examples 279



 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : Max Sys Pwr (AC) (0x5a)
 Entity ID             : 19.1 (Power Unit)
 Sensor Type (Threshold)  : Power Supply (0x08)
 Sensor Reading        : 440 (+/- 0) Watts
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : Max Sys Pwr (DC) (0x5b)
 Entity ID             : 19.1 (Power Unit)
 Sensor Type (Threshold)  : Power Supply (0x08)
 Sensor Reading        : 405 (+/- 0) Watts
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : Max Pwr Support (0x5c)
 Entity ID             : 19.1 (Power Unit)
 Sensor Type (Threshold)  : Power Supply (0x08)
 Sensor Reading        : 1275 (+/- 0) Watts
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : Min Pwr Cap (0x5d)
 Entity ID             : 19.1 (Power Unit)
 Sensor Type (Threshold)  : Power Supply (0x08)
 Sensor Reading        : 200 (+/- 0) Watts
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds

280 Verbose output examples



 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : PS Mismatch (0x5e)
 Entity ID             : 19.1 (Power Unit)
 Sensor Type (Discrete): Power Supply (0x08)
 Sensor Reading        : 0h
 Event Message Control : No Events From Sensor
 States Asserted       : Digital State
                         [State Deasserted]
 OEM                   : 1

Sensor ID              : 12V Rail (0x5f)
 Entity ID             : 19.1 (Power Unit)
 Sensor Type (Threshold)  : Power Supply (0x08)
 Sensor Reading        : 12.160 (+/- 0) Volts
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : Fans Power (DC) (0x60)
 Entity ID             : 30.1 (Cooling Unit)
 Sensor Type (Threshold)  : Cooling Device (0x0a)
 Sensor Reading        : 65 (+/- 0) Watts
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : Fan 1 DutyCycle (0x61)
 Entity ID             : 29.1 (Fan Device)
 Sensor Type (Threshold)  : Fan (0x04)
 Sensor Reading        : 36.848 (+/- 0) percent
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : Fan 2 DutyCycle (0x62)
 Entity ID             : 29.2 (Fan Device)
 Sensor Type (Threshold)  : Fan (0x04)

Verbose output examples 281



 Sensor Reading        : 36.848 (+/- 0) percent
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : Fan 3 DutyCycle (0x63)
 Entity ID             : 29.3 (Fan Device)
 Sensor Type (Threshold)  : Fan (0x04)
 Sensor Reading        : 36.848 (+/- 0) percent
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : Fan 4 DutyCycle (0x64)
 Entity ID             : 29.4 (Fan Device)
 Sensor Type (Threshold)  : Fan (0x04)
 Sensor Reading        : 36.848 (+/- 0) percent
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : Fan 5 DutyCycle (0x65)
 Entity ID             : 29.5 (Fan Device)
 Sensor Type (Threshold)  : Fan (0x04)
 Sensor Reading        : 36.848 (+/- 0) percent
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : Fan 6 DutyCycle (0x66)
 Entity ID             : 29.6 (Fan Device)
 Sensor Type (Threshold)  : Fan (0x04)
 Sensor Reading        : 36.848 (+/- 0) percent

282 Verbose output examples



 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : Fan 7 DutyCycle (0x67)
 Entity ID             : 29.7 (Fan Device)
 Sensor Type (Threshold)  : Fan (0x04)
 Sensor Reading        : 36.848 (+/- 0) percent
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : Fan 8 DutyCycle (0x68)
 Entity ID             : 29.8 (Fan Device)
 Sensor Type (Threshold)  : Fan (0x04)
 Sensor Reading        : 36.848 (+/- 0) percent
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : Fan 9 DutyCycle (0x69)
 Entity ID             : 29.9 (Fan Device)
 Sensor Type (Threshold)  : Fan (0x04)
 Sensor Reading        : 36.848 (+/- 0) percent
 Status                : ok
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : Fan 10 DutyCycle (0x6a)
 Entity ID             : 29.10 (Fan Device)
 Sensor Type (Threshold)  : Fan (0x04)
 Sensor Reading        : 36.848 (+/- 0) percent
 Status                : ok

Verbose output examples 283



 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Sensor ID              : Memory (0x6b)
 Entity ID             : 7.1 (System Board)
 Sensor Type (Discrete): Memory (0x0c)
 Sensor Reading        : 0h
 Event Message Control : No Events From Sensor
 States Asserted       : Memory
                         [Presence Detected]
 Assertions Enabled    : Memory
                         [Uncorrectable ECC]
                         [Correctable ECC logging limit reached]
 OEM                   : 0

Sensor ID              : Enclosure Type (0x6c)
 Entity ID             : 23.1 (System Chassis)
 Sensor Type (Threshold)  : Chassis (0x18)
 Sensor Reading        : Disabled
 Status                : Not Available
 Positive Hysteresis   : Unspecified
 Negative Hysteresis   : Unspecified
 Minimum sensor range  : Unspecified
 Maximum sensor range  : Unspecified
 Event Message Control : No Events From Sensor
 Readable Thresholds   : No Thresholds
 Settable Thresholds   : No Thresholds
 Threshold Read Mask   : unr 

Device ID              : BMC CONTROLLER
Entity ID              : 23.1 (System Chassis)
Device Access Address  : 20h
Logical FRU Device     : EEh
Channel Number         : 0h
LUN.Bus                : 0h.0h
Device Type.Modifier   : 10h.0h (IPMI FRU Inventory)
OEM                    : 00h

Device ID              : MB BIOS
Entity ID              : 34.1 (BIOS)
Device Access Address  : 20h
Logical FRU Device     : EFh
Channel Number         : 0h
LUN.Bus                : 0h.0h
Device Type.Modifier   : 10h.0h (IPMI FRU Inventory)
OEM                    : 00h

Device ID              : CPU 1
Entity ID              : 65.1 (Processor)
Device Access Address  : 20h
Logical FRU Device     : 10h

284 Verbose output examples



Channel Number         : 0h
LUN.Bus                : 0h.0h
Device Type.Modifier   : 10h.0h (IPMI FRU Inventory)
OEM                    : 00h

Device ID              : CPU 2
Entity ID              : 65.2 (Processor)
Device Access Address  : 20h
Logical FRU Device     : 11h
Channel Number         : 0h
LUN.Bus                : 0h.0h
Device Type.Modifier   : 10h.0h (IPMI FRU Inventory)
OEM                    : 00h

Device ID              : CPU 1 DIMM 4
Entity ID              : 32.4 (Memory Device)
Device Access Address  : 20h
Logical FRU Device     : 6Eh
Channel Number         : 0h
LUN.Bus                : 0h.0h
Device Type.Modifier   : 10h.1h (DIMM Memory ID)
OEM                    : 00h

Device ID              : CPU 1 DIMM 6
Entity ID              : 32.6 (Memory Device)
Device Access Address  : 20h
Logical FRU Device     : 6Fh
Channel Number         : 0h
LUN.Bus                : 0h.0h
Device Type.Modifier   : 10h.1h (DIMM Memory ID)
OEM                    : 00h

Device ID              : CPU 2 DIMM 4
Entity ID              : 32.10 (Memory Device)
Device Access Address  : 20h
Logical FRU Device     : 70h
Channel Number         : 0h
LUN.Bus                : 0h.0h
Device Type.Modifier   : 10h.1h (DIMM Memory ID)
OEM                    : 00h

Device ID              : CPU 2 DIMM 6
Entity ID              : 32.12 (Memory Device)
Device Access Address  : 20h
Logical FRU Device     : 71h
Channel Number         : 0h
LUN.Bus                : 0h.0h
Device Type.Modifier   : 10h.1h (DIMM Memory ID)
OEM                    : 00h

Device ID              : ChasMgmtCtlr1
Entity ID              : 23.1 (System Chassis)
Device Slave Address   : 44h
Channel Number         : 0h
ACPI System P/S Notif  : Not Required
ACPI Device P/S Notif  : Not Required
Controller Presence    : Static

Verbose output examples 285



Logs Init Agent Errors : No
Event Message Gen      : Enable
Device Capabilities
 Chassis Device        : Yes
 Bridge                : No
 IPMB Event Generator  : Yes
 IPMB Event Receiver   : No
 FRU Inventory Device  : Yes
 SEL Device            : No
 SDR Repository        : No
 Sensor Device         : No

Device ID              : PsMgmtCtlr1
Entity ID              : 10.1 (Power Supply)
Device Slave Address   : 52h
Channel Number         : 0h
ACPI System P/S Notif  : Not Required
ACPI Device P/S Notif  : Not Required
Controller Presence    : Dynamic
Logs Init Agent Errors : No
Event Message Gen      : Enable
Device Capabilities
 Chassis Device        : No
 Bridge                : No
 IPMB Event Generator  : Yes
 IPMB Event Receiver   : No
 FRU Inventory Device  : Yes
 SEL Device            : No
 SDR Repository        : No
 Sensor Device         : No

Device ID              : PsMgmtCtlr2
Entity ID              : 10.2 (Power Supply)
Device Slave Address   : 54h
Channel Number         : 0h
ACPI System P/S Notif  : Not Required
ACPI Device P/S Notif  : Not Required
Controller Presence    : Dynamic
Logs Init Agent Errors : No
Event Message Gen      : Enable
Device Capabilities
 Chassis Device        : No
 Bridge                : No
 IPMB Event Generator  : Yes
 IPMB Event Receiver   : No
 FRU Inventory Device  : Yes
 SEL Device            : No
 SDR Repository        : No
 Sensor Device         : No

Device ID              : PsMgmtCtlr3
Entity ID              : 10.3 (Power Supply)
Device Slave Address   : 56h
Channel Number         : 0h
ACPI System P/S Notif  : Not Required
ACPI Device P/S Notif  : Not Required
Controller Presence    : Dynamic

286 Verbose output examples



Logs Init Agent Errors : No
Event Message Gen      : Enable
Device Capabilities
 Chassis Device        : No
 Bridge                : No
 IPMB Event Generator  : Yes
 IPMB Event Receiver   : No
 FRU Inventory Device  : Yes
 SEL Device            : No
 SDR Repository        : No
 Sensor Device         : No

Device ID              : PsMgmtCtlr4
Entity ID              : 10.4 (Power Supply)
Device Slave Address   : 58h
Channel Number         : 0h
ACPI System P/S Notif  : Not Required
ACPI Device P/S Notif  : Not Required
Controller Presence    : Dynamic
Logs Init Agent Errors : No
Event Message Gen      : Enable
Device Capabilities
 Chassis Device        : No
 Bridge                : No
 IPMB Event Generator  : Yes
 IPMB Event Receiver   : No
 FRU Inventory Device  : Yes
 SEL Device            : No
 SDR Repository        : No
 Sensor Device         : No

root@MFIKE-LX:~#

Verbose output examples 287



DCTS (DCMI Conformance Test Suite)
The DCMI Conformance Test Suite (DCTS) provides a baseline set of test for verifying compliance with the
Data Center Management Interface (DCMI) specification (in both version 1.1 and 1.5)

DCTS presents a simple menu driven user interface. Each test scenario verifies a logical unit of functionality
and reports a pass, a fail or a skipped.

Based on the method chosen for communication with the target system, the following two modes of testing
are supported.

• In-Band Testing

◦ Using KCS Interface
◦ The test tool resides on the Server Platform (UUT)

• Out-of-Band Testing

◦ Using Ethernet LAN-based connectivity through IPMI/RMCP+ protocol
◦ The test tool can reside on any remote Windows-based PC

Steps to run the DCTS over LAN Interface
Download the corresponding DCTS executable from Intel website. Go to http://www.intel.com/
content/www/us/en/data-center/dcmi/binary-download.html to download.

Userconf.cfg
The basic network and session configuration for the test environment is extracted from the file
UserConf.cfg file available in the same folder as the executable file.

• Enter the correct Cipher Suite number
• Enter the file name for

log-file-name
• Enter the correct target IP (IP address of iLO)
• Enter the Username (iLO User name to authenticate)

DCMIConformance.exe
WIN32 application. It serves as the:

• Presentation layer for user Input/output
• Send, receive, and process the commands
• Report results

288  DCTS (DCMI Conformance Test Suite)



Figure 9: DCMIConformance

Known Issues or Limitations

Request with Responder’s Address as ‘0’
Issue:

For some reason, DCTS tool revision v1.5 (intended for verifying conformance to DCMI 1.1 and DCMI 1.5)
requests the DCMI Get Capabilities with the responder’s address set to ‘0x00’. BMC expects the responder’s
address to be set to ‘0x20’. Hence we drop any packets not addressed to us.

Fix:

Comment the strict check in the BMC code that accepts the packets only targeted to 0x20.

Known Issues or Limitations 289



OCMI Conformance Test Summary (DCMI v1.1 rev 2)
Table 148: OCMI Conformance Test Summary (DCMI v1.1 rev 2)

Tests 1, Basic Discovery

Test Case 1.1 Supported DCMI Platform
Capabilities

PASS

Test Case 1.2 Manageability Access Attributes PASS

Test Case 1.3 Session Less Capabilities PASS

Test Case 1.4 Minimum Platform Attributes PASS

Test Case 1.5 Optional Platform Attributes PASS

Test Case 1.6 Enhanced System Power
Statistics Attributes

PASS

Tests 2, Basics Test

Test Case 2.1 Device IP from Management
Controller

PASS

Test Case 2.2 System GUID from Management
Controller

PASS

Test Case 2.3 Asset Tag from UUT PASS

Tests 3, Cipher Tests

Test Case 3.1 Checking Supported CipherSuites PASS

Tests 4, SEL Tests

Test Case 4.1 Get SEL Info PASS

Test Case 4.2 Reserve SEL PASS

Test Case 4.3 Get SEL Entry, with Reservation
ID

PASS

Test Case 4.4 Get First SEL Entry after
Reservation

PASS

Test Case 4.5 Get Last SEL ENtry and Verify PASS

Test Case 4.6 Clear SEL PASS

Test Case 4.7 Verify SEL Clear Action PASS

Tests 5, DCMI Sensor Tests

Table Continued

290  OCMI Conformance Test Summary (DCMI v1.1 rev 2)



Test Case 5.1 Sensors Entity: Inlet (0x40) PASS

Test Case 5.2 Sensors Entity: CPU (0x41) PASS

Test Case 5.3 Sensors Entity: Baseboard (0x42) PASS

Test Case 5.4 Sensor Entity ID: 0x40, Type: 0x1,
Instance: 1

PASS

Test Case 5.5 Sensor Entity ID: 0x41, Type: 0x1,
Instance: 1

PASS

Test Case 5.6 Sensor Entity ID: 0x41, Type: 0x1,
Instance: 2

PASS

Test Case 5.7 Sensor Entity ID: 0x42, Type: 0x1,
Instance: 1

PASS

Test Case 5.8 Sensor Entity ID: 0x42, Type: 0x1,
Instance: 2

PASS

Test Case 5.9 Sensor Entity ID: 0x42, Type: 0x1,
Instance: 3

PASS

Test Case 5.10 Sensor Entity ID: 0x42, Type: 0x1,
Instance: 4

PASS

Test Case 5.11 Sensor Entity ID: 0x42, Type: 0x1,
Instance: 5

PASS

Test Case 5.12 Sensor Entity ID: 0x42, Type: 0x1,
Instance: 6

PASS

Tests 6, DCMI SDR Tests

Test Case 6.1 Checking SDR Repository Info PASS

Tests 7, Chassis Commands

Test Case 7.1 Issue Get Chassis Capabilities
Command         

PASS

Test Case 7.2 Checking Chassis Status for Initial
Power State

PASS

Test Case 7.3 Checking Chassis Identify
Command supported    

PASS

Test Case 7.4 Check ACPI Power
State                         

PASS

Table Continued

DCTS (DCMI Conformance Test Suite) 291



Test Case 7.5 Check Turn System
Off                          

PASS

Test Case 7.6 Check Turn System
On                           

PASS

Test Case 7.7 Check Reboot
System                            

PASS

Tests 8, Verify support for the LAN Configuration Commands

Test Case 8.1 VLAN Support Test         PASS

Test Case 8.2 VLAN Priority Test        PASS

Test Case 8.3 VLAN RMCPP+ Entry Support PASS

Test Case 8.4 VLAN RMCPP+ Entries       PASS

Test Case 8.5 VLAN RMCPP+ Privilege level PASS

Tests 9, DCMI SOL Tests

Test Case 9.1 Checking Serial Over Lan
Configuration       

PASS

Test Case 9.2 Checking SOL Channel Auth.
Capabilities      

PASS

Test Case 9.3 Checking SOL Payload Activation
- Type SOL   

PASS

Test Case 9.4 Checking SOL Payload Instance
Info - Type SOL

PASS

Tests 10, DCMI TMode Tests

Test Case 10.1 TMODE Support Test SKIPPED

Tests 11, DCMI Discovery for Power Management Controller Info

Test Case 11.1 DCMI Get Power Reading PASS

Test Case 11.2 DCMI Get Power Limit  PASS

Tests 12, LAN Configuration Check Tests

Test Case 12.1 Lan Configuration Gratutious Arp
Check 

PASS

Test Case 12.2 Lan Configuration Arp Control
Check    

PASS

Table Continued

292 DCTS (DCMI Conformance Test Suite)



Test Case 12.3 Lan Configuration IP Source
Check      

PASS

Test Case 12.4 Lan Configuration Access Mode
Check    

PASS

Test Case 12.5 User Access Check                      PASS

Test Case 12.6 User Payload Access
Check              

PASS

Test Case 12.7 Multi Session Test                     PASS

Test Case 12.8 Get MC ID String Test                  PASS

NOTE:

DCMI v1.5 compliance is currently NOT supported. It expects the below additional test cases to be
passed

Tests 13, Configuration Parameters Test

Test Case 13.1 Get Active DHCP              FAIL

Test Case 13.2 Get Discovery Configuration  FAIL

Test Case 13.3 Get DHCP Timing 1            FAIL

Test Case 13.4 Get DHCP Timing 2            FAIL

Test Case 13.5 Get DHCP Timing 3            FAIL

Tests 14, Thermal Management Tests

Test Case 14.1 Temperature reading for sensor:
Inlet    (0x40)

FAIL

Test Case 14.2 Temperature reading for sensor:
CPU      (0x41)

FAIL

Test Case 14.3 Temperature reading for sensor:
Baseboard (0x42)

FAIL

DCTS (DCMI Conformance Test Suite) 293



Glossary
ACPI

Advanced Configuration and Power Interface Specification

BCD

Binary-coded Decimal

BMC

Baseboard Management Controller

BT

Block Transfer

ChMC

Chassis Management Controller

CMOS

The PC-AT compatible region of battery-backed 128 bytes of memory, which normally resides on the
baseboard

CTS

Clear to send

DCD

Data Carrier Detect

DCMI

Data Center Manageability Interface

DSR

Data Set Ready

DTR

Data Transfer Request

EvMRev

Event message revision

FPGA

Field-Programmable Gate Array

FRB

Fault-resilient booting

FRU

Field replaceable unit

GUID

Globally Unique ID

HA

High availability

294  Glossary



I2C

Inter-Integrated Circuit

IANA

Internet Assigned Numbers Authority

ICMB

Intelligent Chassis Management Bus

IERR

Internal error

IPMB

Intelligent Platform Management Bus

PICMG

PCI Industrial Computer Manufacturers Group

IPMI

Intelligent Platform Management Interface

KCS

Keyboard Controller Style

LPC

Low Pin Count

LS

Least significant byte

MC

Management Controller

MS

Most significant byte

mux

multiplexing

NetFn

Network Function

NAK

Negative-acknowledge character

NMI

Non-maskable Interrupt

PCI

Peripheral Component Interconnect

PEF

Platform Event Filtering

Glossary 295



POH

Power-On Hours

PSMC

Power Supply Management Controller

RAKP

Remote Authenticated Key-Exchange Protocol

RMCP

Remote Management Control Protocol

RQ

Received request

RS

Received response

rsSA

Random Single Switch Algorithm

RTS

Request to send

SCI

Software Configuration Identification

SDR

Sensor Data Record

SEL

System Event Log

SMB

System Management Bus

SMI

System Management Interrupt

SMIC

System Management Interface Chip

SMM

System Management Mode.

SMS

System Management Software

SOL

Serial Over LAN

SSI

Server System Infrastructure

296 Glossary



SSIF

SMBus System Interface

SWID

Software ID

TAP

Telocator Access Protocol

UUID

Universally Unique IDentifier

VSO

VITA Standards Organization

Glossary 297



Standard sensor list

Sensor LUN O
Sen
sor
Nu
mbe
r

Event
Only

ERC Sensor Type Entity ID Logi
cal
Con
tain
er
Bit

Entity
Instance

Alternate
Old Name

Old
Name

New
Name

1 0x01
Threshol
d

0x04 Fan 0x1D
Cooling

1 FAN 1 Fan_Spe
ed_01

2 0x01
Threshol
d

0x01
Temperature

0x03
Processo
r

1 XX-CPU
1

CPU_Tem
p_C1

3 0x01
Threshol
d

0x01
Temperature

0x03
Processo
r

2 XX-CPU
2

CPU_Tem
p_C2

4 0x01
Threshol
d

0x01
Temperature

0x03
Processo
r

3 XX-CPU
3

CPU_Tem
p_C3

5 0x01
Threshol
d

0x01
Temperature

0x03
Processo
r

4 XX-CPU
4

CPU_Tem
p_C4

6 0x01
Threshol
d

0x01
Temperature

0x03
Processo
r

5 XX-CPU
5

CPU_Tem
p_C5

7 0x01
Threshol
d

0x01
Temperature

0x03
Processo
r

6 XX-CPU
6

CPU_Tem
p_C6

8 0x01
Threshol
d

0x01
Temperature

0x03
Processo
r

7 XX-CPU
7

CPU_Tem
p_C7

9 0x01
Threshol
d

0x01
Temperature

0x03
Processo
r

8 XX-CPU
8

CPU_Tem
p_C8

10 0x01
Threshol
d

0x01
Temperature

0x14
Power
Module

1 XX-VR
P1

CPUVR_
Temp_C1

11 0x01
Threshol
d

0x01
Temperature

0x14
Power
Module

2 XX-VR
P2

CPUVR_
Temp_C2

Table Continued

298  Standard sensor list



12 0x01
Threshol
d

0x01
Temperature

0x14
Power
Module

3 XX-VR
P3

CPUVR_
Temp_C3

13 0x01
Threshol
d

0x01
Temperature

0x14
Power
Module

4 XX-VR
P4

CPUVR_
Temp_C4

14 0x01
Threshol
d

0x01
Temperature

0x14
Power
Module

5 XX-VR
P5

CPUVR_
Temp_C5

15 0x01
Threshol
d

0x01
Temperature

0x14
Power
Module

6 XX-VR
P6

CPUVR_
Temp_C6

16 0x01
Threshol
d

0x01
Temperature

0x14
Power
Module

7 XX-VR
P7

CPUVR_
Temp_C7

17 0x01
Threshol
d

0x01
Temperature

0x14
Power
Module

8 XX-VR
P8

CPUVR_
Temp_C8

18 0x6F
Sensor-
specific

0x07
Processor

0x03
Processo
r

1 CPU-1 CPU_Stat
_C1

19 0x6F
Sensor-
specific

0x07
Processor

0x03
Processo
r

2 CPU-2 CPU_Stat
_C2

20 0x6F
Sensor-
specific

0x07
Processor

0x03
Processo
r

3 CPU-3 CPU_Stat
_C3

21 0x6F
Sensor-
specific

0x07
Processor

0x03
Processo
r

4 CPU-4 CPU_Stat
_C4

22 0x6F
Sensor-
specific

0x07
Processor

0x03
Processo
r

5 CPU-5 CPU_Stat
_C5

23 0x6F
Sensor-
specific

0x07
Processor

0x03
Processo
r

6 CPU-6 CPU_Stat
_C6

24 0x6F
Sensor-
specific

0x07
Processor

0x03
Processo
r

7 CPU-7 CPU_Stat
_C7

25 0x6F
Sensor-
specific

0x07
Processor

0x03
Processo
r

8 CPU-8 CPU_Stat
_C8

26 0x01
Threshol
d

0x02 Voltage 0x03
Processo
r

1 n/a CPU_Volt
_C1

Table Continued

Standard sensor list 299



27 0x01
Threshol
d

0x02 Voltage 0x03
Processo
r

2 n/a CPU_Volt
_C2

28 0x01
Threshol
d

0x02 Voltage 0x03
Processo
r

3 n/a CPU_Volt
_C3

29 0x01
Threshol
d

0x02 Voltage 0x03
Processo
r

4 n/a CPU_Volt
_C4

30 0x01
Threshol
d

0x02 Voltage 0x03
Processo
r

5 n/a CPU_Volt
_C5

31 0x01
Threshol
d

0x02 Voltage 0x03
Processo
r

6 n/a CPU_Volt
_C6

32 0x01
Threshol
d

0x02 Voltage 0x03
Processo
r

7 n/a CPU_Volt
_C7

33 0x01
Threshol
d

0x02 Voltage 0x03
Processo
r

8 n/a CPU_Volt
_C8

34 0x01
Threshol
d

0x0B Other 0x03
Processo
r

0x8
0

1 n/a CPU_Wat
t

35 0x01
Threshol
d

0x0B Other 0x03
Processo
r

0x8
0

1 CPU
Utilizatio
n

CPU_Util

36 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

11 XX-P1
DIMM1-6

Mem_Te
mp_C1G1

37 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

12 XX-P1
DIMM7-1
2

Mem_Te
mp_C1G2

38 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

13 XX-P2
DIMM1-6

Mem_Te
mp_C2G1

39 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

14 XX-P2
DIMM7-1
2

Mem_Te
mp_C2G2

40 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

15 XX-P3
DIMM1-6

Mem_Te
mp_C2G1

41 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

16 XX-P3
DIMM7-1
2

Mem_Te
mp_C2G2

Table Continued

300 Standard sensor list



42 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

17 XX-P4
DIMM1-6

Mem_Te
mp_C3G1

43 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

18 XX-P4
DIMM7-1
2

Mem_Te
mp_C3G2

44 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

19 XX-P5
DIMM1-6

Mem_Te
mp_C4G1

45 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

20 XX-P5
DIMM7-1
2

Mem_Te
mp_C4G2

46 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

21 XX-P6
DIMM1-6

Mem_Te
mp_C5G1

47 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

22 XX-P6
DIMM7-1
2

Mem_Te
mp_C5G2

48 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

23 XX-P4
DIMM1-6

Mem_Te
mp_C6G1

49 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

24 XX-P4
DIMM7-1
2

Mem_Te
mp_C6G2

50 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

25 XX-P5
DIMM1-6

Mem_Te
mp_C7G1

51 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

26 XX-P5
DIMM7-1
2

Mem_Te
mp_C7G2

52 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

27 XX-P6
DIMM1-6

Mem_Te
mp_C8G1

53 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

28 XX-P6
DIMM7-1
2

Mem_Te
mp_C8G2

54 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

11 XX-P1
NVDIMM
1-6

NVMem_
Temp_C1
G1

55 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

12 XX-P1
NVDIMM
7-12

NVMem_
Temp_C1
G2

56 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

13 XX-P2
NVDIMM
1-6

NVMem_
Temp_C2
G1

Table Continued

Standard sensor list 301



57 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

14 XX-P2
NVDIMM
7-12

NVMem_
Temp_C2
G2

58 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

15 XX-P2
NVDIMM
1-6

NVMem_
Temp_C2
G1

59 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

16 XX-P2
NVDIMM
7-12

NVMem_
Temp_C2
G2

60 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

17 XX-P3
NVDIMM
1-6

NVMem_
Temp_C3
G1

61 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

18 XX-P3
NVDIMM
7-12

NVMem_
Temp_C3
G2

62 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

19 XX-P4
NVDIMM
1-6

NVMem_
Temp_C4
G1

63 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

20 XX-P4
NVDIMM
7-12

NVMem_
Temp_C4
G2

64 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

21 XX-P5
NVDIMM
1-6

NVMem_
Temp_C5
G1

65 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

22 XX-P5
NVDIMM
7-12

NVMem_
Temp_C5
G2

66 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

23 XX-P6
NVDIMM
1-6

NVMem_
Temp_C6
G1

67 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

24 XX-P6
NVDIMM
7-12

NVMem_
Temp_C6
G2

68 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

25 XX-P7
NVDIMM
1-6

NVMem_
Temp_C7
G1

69 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

26 XX-P7
NVDIMM
7-12

NVMem_
Temp_C7
G2

70 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

27 XX-P8
NVDIMM
1-6

NVMem_
Temp_C8
G1

71 0x01
Threshol
d

0x01
Temperature

0x20
Memory

0x8
0

28 XX-P8
NVDIMM
7-12

NVMem_
Temp_C8
G2

Table Continued

302 Standard sensor list



72 0x6F
Sensor-
specific

0x0C Memory 0x20
Memory

0x8
0

0 Memory
Status

Mem_Stat

73 0x6F
Sensor-
specific

0x0C Memory 0x20
Memory

0x8
0

1 n/a Mem_Stat
_C1

74 0x6F
Sensor-
specific

0x0C Memory 0x20
Memory

0x8
0

2 n/a Mem_Stat
_C2

75 0x6F
Sensor-
specific

0x0C Memory 0x20
Memory

0x8
0

3 n/a Mem_Stat
_C3

76 0x6F
Sensor-
specific

0x0C Memory 0x20
Memory

0x8
0

4 n/a Mem_Stat
_C4

77 0x6F
Sensor-
specific

0x0C Memory 0x20
Memory

0x8
0

5 n/a Mem_Stat
_C5

78 0x6F
Sensor-
specific

0x0C Memory 0x20
Memory

0x8
0

6 n/a Mem_Stat
_C6

79 0x6F
Sensor-
specific

0x0C Memory 0x20
Memory

0x8
0

7 n/a Mem_Stat
_C7

80 0x6F
Sensor-
specific

0x0C Memory 0x20
Memory

0x8
0

8 n/a Mem_Stat
_C8

81 0x01
Threshol
d

0x02 Voltage 0x14
Power
Module

0x8
0

21 n/a MemVR_
Volt_C1G
1

82 0x01
Threshol
d

0x02 Voltage 0x14
Power
Module

0x8
0

22 n/a MemVR_
Volt_C1G
2

83 0x01
Threshol
d

0x02 Voltage 0x14
Power
Module

0x8
0

23 n/a MemVR_
Volt_C2G
1

84 0x01
Threshol
d

0x02 Voltage 0x14
Power
Module

0x8
0

24 n/a MemVR_
Volt_C2G
2

85 0x01
Threshol
d

0x02 Voltage 0x14
Power
Module

0x8
0

25 n/a MemVR_
Volt_C3G
1

86 0x01
Threshol
d

0x02 Voltage 0x14
Power
Module

0x8
0

26 n/a MemVR_
Volt_C3G
2

Table Continued

Standard sensor list 303



87 0x01
Threshol
d

0x02 Voltage 0x14
Power
Module

0x8
0

27 n/a MemVR_
Volt_C4G
1

88 0x01
Threshol
d

0x02 Voltage 0x14
Power
Module

0x8
0

28 n/a MemVR_
Volt_C4G
2

89 0x01
Threshol
d

0x02 Voltage 0x14
Power
Module

0x8
0

28 n/a MemVR_
Volt_C5G
1

90 0x01
Threshol
d

0x02 Voltage 0x14
Power
Module

0x8
0

30 n/a MemVR_
Volt_C5G
2

91 0x01
Threshol
d

0x02 Voltage 0x14
Power
Module

0x8
0

31 n/a MemVR_
Volt_C6G
1

92 0x01
Threshol
d

0x02 Voltage 0x14
Power
Module

0x8
0

32 n/a MemVR_
Volt_C6G
2

93 0x01
Threshol
d

0x02 Voltage 0x14
Power
Module

0x8
0

33 n/a MemVR_
Volt_C7G
1

94 0x01
Threshol
d

0x02 Voltage 0x14
Power
Module

0x8
0

34 n/a MemVR_
Volt_C7G
2

95 0x01
Threshol
d

0x02 Voltage 0x14
Power
Module

0x8
0

35 n/a MemVR_
Volt_C8G
1

96 0x01
Threshol
d

0x02 Voltage 0x14
Power
Module

0x8
0

36 n/a MemVR_
Volt_C8G
2

97 0x01
Threshol
d

0x01
Temperature

0x14
Power
Module

0x8
0

21 XX-VR
P1 Mem
1

MemVR_
Temp_C0
1G1

98 0x01
Threshol
d

0x01
Temperature

0x14
Power
Module

0x8
0

22 XX-VR
P1 Mem
2

MemVR_
Temp_C0
1G2

99 0x01
Threshol
d

0x01
Temperature

0x14
Power
Module

0x8
0

23 XX-VR
P2 Mem
1

MemVR_
Temp_C0
2G1

100 0x01
Threshol
d

0x01
Temperature

0x14
Power
Module

0x8
0

24 XX-VR
P2 Mem
2

MemVR_
Temp_C0
2G2

101 0x01
Threshol
d

0x01
Temperature

0x14
Power
Module

0x8
0

25 XX-VR
P3 Mem
1

MemVR_
Temp_C0
3G1

Table Continued

304 Standard sensor list



102 0x01
Threshol
d

0x01
Temperature

0x14
Power
Module

0x8
0

26 XX-VR
P3 Mem
2

MemVR_
Temp_C0
3G2

103 0x01
Threshol
d

0x01
Temperature

0x14
Power
Module

0x8
0

27 XX-VR
P4 Mem
1

MemVR_
Temp_C0
4G1

104 0x01
Threshol
d

0x01
Temperature

0x14
Power
Module

0x8
0

28 XX-VR
P4 Mem
2

MemVR_
Temp_C0
4G2

105 0x01
Threshol
d

0x01
Temperature

0x14
Power
Module

0x8
0

29 XX-VR
P5 Mem
1

MemVR_
Temp_C0
5G1

106 0x01
Threshol
d

0x01
Temperature

0x14
Power
Module

0x8
0

30 XX-VR
P5 Mem
2

MemVR_
Temp_C0
5G2

107 0x01
Threshol
d

0x01
Temperature

0x14
Power
Module

0x8
0

31 XX-VR
P6 Mem
1

MemVR_
Temp_C0
6G1

108 0x01
Threshol
d

0x01
Temperature

0x14
Power
Module

0x8
0

32 XX-VR
P6 Mem
2

MemVR_
Temp_C0
6G2

109 0x01
Threshol
d

0x01
Temperature

0x14
Power
Module

0x8
0

33 XX-VR
P7 Mem
1

MemVR_
Temp_C0
7G1

110 0x01
Threshol
d

0x01
Temperature

0x14
Power
Module

0x8
0

34 XX-VR
P7 Mem
2

MemVR_
Temp_C0
7G2

111 0x01
Threshol
d

0x01
Temperature

0x14
Power
Module

0x8
0

35 XX-VR
P8 Mem
1

MemVR_
Temp_C0
8G1

112 0x01
Threshol
d

0x01
Temperature

0x14
Power
Module

0x8
0

36 XX-VR
P8 Mem
2

MemVR_
Temp_C0
8G2

113 0x01
Threshol
d

0x0B Other 0x20
Memory

0x8
0

0 n/a Mem_Wat
t

114 0x6F
Sensor-
specific

0x21 Slot 0x31
PCIe

1 n/a Slot_Stat
_01

115 0x6F
Sensor-
specific

0x21 Slot 0x31
PCIe

2 n/a Slot_Stat
_02

116 0x6F
Sensor-
specific

0x21 Slot 0x31
PCIe

3 n/a Slot_Stat
_03

Table Continued

Standard sensor list 305



117 0x6F
Sensor-
specific

0x21 Slot 0x31
PCIe

4 n/a Slot_Stat
_04

118 0x6F
Sensor-
specific

0x21 Slot 0x31
PCIe

5 n/a Slot_Stat
_05

119 0x6F
Sensor-
specific

0x21 Slot 0x31
PCIe

6 n/a Slot_Stat
_06

120 0x6F
Sensor-
specific

0x21 Slot 0x31
PCIe

7 n/a Slot_Stat
_07

121 0x6F
Sensor-
specific

0x21 Slot 0x31
PCIe

8 n/a Slot_Stat
_08

122 0x6F
Sensor-
specific

0x21 Slot 0x31
PCIe

9 n/a Slot_Stat
_09

123 0x6F
Sensor-
specific

0x21 Slot 0x31
PCIe

10 n/a Slot_Stat
_10

124 0x6F
Sensor-
specific

0x21 Slot 0x31
PCIe

11 n/a Slot_Stat
_11

125 0x6F
Sensor-
specific

0x21 Slot 0x31
PCIe

12 n/a Slot_Stat
_12

126 0x6F
Sensor-
specific

0x21 Slot 0x31
PCIe

13 n/a Slot_Stat
_13

127 0x6F
Sensor-
specific

0x21 Slot 0x31
PCIe

14 n/a Slot_Stat
_14

128 0x6F
Sensor-
specific

0x21 Slot 0x31
PCIe

15 n/a Slot_Stat
_15

129 0x6F
Sensor-
specific

0x21 Slot 0x31
PCIe

16 n/a Slot_Stat
_16

130 0x6F
Sensor-
specific

0x21 Slot 0x31
PCIe

17 n/a Slot_Stat
_17

131 0x6F
Sensor-
specific

0x21 Slot 0x31
PCIe

18 n/a Slot_Stat
_18

Table Continued

306 Standard sensor list



132 0x01
Threshol
d

0x01
Temperature

0x31
PCIe

1 XX-Mezz 1 XX-PCI 1 Slot_Tem
p_01

133 0x01
Threshol
d

0x01
Temperature

0x31
PCIe

2 XX-Mezz 2 XX-PCI 2 Slot_Tem
p_02

134 0x01
Threshol
d

0x01
Temperature

0x31
PCIe

3 XX-Mezz 3 XX-PCI 3 Slot_Tem
p_03

135 0x01
Threshol
d

0x01
Temperature

0x31
PCIe

4 XX-Mezz 4 XX-PCI 4 Slot_Tem
p_04

136 0x01
Threshol
d

0x01
Temperature

0x31
PCIe

5 XX-Mezz 5 XX-PCI 5 Slot_Tem
p_05

137 0x01
Threshol
d

0x01
Temperature

0x31
PCIe

6 XX-Mezz 6 XX-PCI 6 Slot_Tem
p_06

138 0x01
Threshol
d

0x01
Temperature

0x31
PCIe

7 XX-Mezz 7 XX-PCI 7 Slot_Tem
p_07

139 0x01
Threshol
d

0x01
Temperature

0x31
PCIe

8 XX-Mezz 8 XX-PCI 8 Slot_Tem
p_08

140 0x01
Threshol
d

0x01
Temperature

0x31
PCIe

9 XX-Mezz 9 XX-PCI 9 Slot_Tem
p_09

141 0x01
Threshol
d

0x01
Temperature

0x31
PCIe

10 XX-Mezz 10 XX-PCI
10

Slot_Tem
p_10

142 0x01
Threshol
d

0x01
Temperature

0x31
PCIe

11 XX-Mezz 11 XX-PCI
11

Slot_Tem
p_11

143 0x01
Threshol
d

0x01
Temperature

0x31
PCIe

12 XX-Mezz 12 XX-PCI
12

Slot_Tem
p_12

144 0x01
Threshol
d

0x01
Temperature

0x31
PCIe

13 XX-Mezz 13 XX-PCI
13

Slot_Tem
p_13

145 0x01
Threshol
d

0x01
Temperature

0x31
PCIe

14 XX-Mezz 14 XX-PCI
14

Slot_Tem
p_14

146 0x01
Threshol
d

0x01
Temperature

0x31
PCIe

15 XX-Mezz 15 XX-PCI
15

Slot_Tem
p_15

Table Continued

Standard sensor list 307



147 0x01
Threshol
d

0x01
Temperature

0x31
PCIe

16 XX-Mezz 16 XX-PCI
16

Slot_Tem
p_16

148 0x01
Threshol
d

0x01
Temperature

0x31
PCIe

17 XX-Mezz 17 XX-PCI
17

Slot_Tem
p_17

149 0x01
Threshol
d

0x01
Temperature

0x31
PCIe

18 XX-Mezz 18 XX-PCI
18

Slot_Tem
p_18

150 0x01
Threshol
d

0x01
Temperature

0x04
Disk

0x8
0

1 XX-Exp
Bay
Drive

NVMeDA
_Temp

151 0x01
Threshol
d

0x01
Temperature

0x04
Disk

0x8
0

2 XX-HD
Max

Drive_Te
mp

152 0x01
Threshol
d

0x01
Temperature

0x04
Disk

0x8
0

3 XX-XXX
HD <X>
Max

DriveBx_
Temp_XX

153 0x01
Threshol
d

0x01
Temperature

0x04
Disk

0x8
0

4 XX-XXX
HD <X>
Max

DriveBk_
Temp_XX

154 0x01
Threshol
d

0x01
Temperature

0x04
Disk

0x8
0

5 XX-XXX
HD <X>
Max

DriveBx_
Temp_XX

155 0x01
Threshol
d

0x01
Temperature

0x04
Disk

0x8
0

6 XX-XXX
HD <X>
Max

DriveBk_
Temp_XX

156 0x01
Threshol
d

0x01
Temperature

0x04
Disk

0x8
0

7 XX-XXX
HD <X>
Max

DriveBx_
Temp_XX

157 0x01
Threshol
d

0x01
Temperature

0x04
Disk

0x8
0

8 XX-XXX
HD <X>
Max

DriveBk_
Temp_XX

158 0x01
Threshol
d

0x01
Temperature

0x04
Disk

0x8
0

9 XX-XXX
HD <X>
Max

DriveBx_
Temp_XX

159 0x01
Threshol
d

0x01
Temperature

0x04
Disk

0x8
0

10 XX-XXX
HD <X>
Max

DriveBk_
Temp_XX

160 0x6F
Sensor-
specific

0x0D Drive
Slot

0x04
Disk

0x8
0

0 n/a Drive_Sta
t

161 0x07
Severity

0x17 Add-in
Card

0x0B
Add-in
Card

0x8
0

1 n/a RAID_Sta
t

Table Continued

308 Standard sensor list



162 0x01
Threshol
d

0x01
Temperature

0x37 Air
Inlet

1 01-Inlet
Ambient

Inlet_Tem
p_01

163 0x01
Threshol
d

0x01
Temperature

0x37 Air
Inlet

2 XX-Front
Ambient

Inlet_Tem
p_02

164 0x01
Threshol
d

0x01
Temperature

0x07
System
Board

1 XX-
Chipset

PCH_Tem
p_01

165 0x01
Threshol
d

0x01
Temperature

0x14
Power
Module

0 XX-E-
Fuse

EFuse_Te
mp_01

166 0x01
Threshol
d

0x02 Voltage 0x07
System
Board

1 n/a Sys12_Vo
lt

167 0x01
Threshol
d

0x01
Temperature

0x06
SysMgmt
Mod

1 XX-iLO BMC_Te
mp

168 0x6F
Sensor-
specific

0x28 MS
Health

0x06
SysMgmt
Mod

1 n/a BMC_Stat

169 0x09
Enable/
Disable

0x27 LAN 0x06
SysMgmt
Mod

1 n/a BMCLAN
Lnk_Stat

170 0x6F
Sensor-
specific

0x22 ACPI
Power

0x07
System
Board

1 n/a ACPI_Sta
t

171 0x6F
Sensor-
specific

0x05 Physical
Security

0x17
System
Chassis

1 Intrusion ChasIntr_
Stat

172 0x07
Severity

0x18 Chassis 0x17
System
Chassis

1 SysHealth
_Stat

173 0x71
OEM

0xC0 OEM 0x17
System
Chassis

1 Sys
Health
LED

174 0x70
OEM

0xC0 OEM 0x17
System
Chassis

1 UID UID_Stat

175 0x01
Threshol
d

0xD0 OEM 0x00
Unspecifi
ed

0 Pattern1 Pattern_C
nt_1

176 0x01
Threshol
d

0xD0 OEM 0x00
Unspecifi
ed

0 Pattern2 Pattern_C
nt_2

Table Continued

Standard sensor list 309



177 0x01
Threshol
d

0xD0 OEM 0x00
Unspecifi
ed

0 Pattern3 Pattern_C
nt_3

178 0x01
Threshol
d

0xD0 OEM 0x00
Unspecifi
ed

0 Pattern4 Pattern_C
nt_4

179 0x01
Threshol
d

0x01
Temperature

0x0B
Add-in
Card

1 XX-HD
Controlle
r

EmbRAID
_Temp_1

180 0x01
Threshol
d

0x01
Temperature

0x0B
Add-in
Card

3 xx-LOM EmLOM_
Temp_1

181 0x01
Threshol
d

0x01
Temperature

0x0B
Add-in
Card

4 xx-LOM
Card

EmLOM_
Temp_2

182 0x01
Threshol
d

0x0B Other 0x07
System
Board

1 Power
Meter

Sys_Watt

183 Event
Only

0x07
System
Board

1 Sys_Ther
mTrip

184 0x08
Availabili
ty

0x25 Entity
Presence

0x0B
Add-in
Card

0 n/a SwRAID_
Pres_1

185 0x08
Availabili
ty

0x17 Add-in
Card

0x0B
Add-in
Card

1 n/a EmbRAID
_Pres_1

186 0x06
Performa
nce Met/
Lags

0x03 Current 0x07
System
Board

1 PwrAlloc
Optimize

PwrAlloc
Opt_Stat

187 0x6F
Sensor-
specific

0x29 Battery 0x28
Battery

1 Megacell
Status1

Batt_Stat
_01

188 0x6F
Sensor-
specific

0x29 Battery 0x28
Battery

2 Megacell
Status2

Batt_Stat
_02

189 0x6F
Sensor-
specific

0x29 Battery 0x28
Battery

3 Megacell
Status3

Batt_Stat
_03

190 0x6F
Sensor-
specific

0x29 Battery 0x28
Battery

4 Megacell
Status4

Batt_Stat
_04

191 0x01
Threshol
d

0x01
Temperature

0x28
Battery

1 XX-Stor
Batt 1

Batt_Tem
p_01

Table Continued

310 Standard sensor list



192 0x01
Threshol
d

0x01
Temperature

0x28
Battery

2 XX-Stor
Batt 2

Batt_Tem
p_02

193 0x01
Threshol
d

0x01
Temperature

0x28
Battery

3 XX-Stor
Batt 3

Batt_Tem
p_03

194 0x01
Threshol
d

0x01
Temperature

0x28
Battery

4 XX-Stor
Batt 4

Batt_Tem
p_04

Sensor LUN 1
SENSOR
Number

ERC Sensor Type Entity ID Entity
Instance

Name Alternate
Name

0 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 0 Mem_Stat_C
01S01

Mem_Stat_B
01S01

1 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 1 Mem_Stat_C
01S02

Mem_Stat_B
01S02

2 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 2 Mem_Stat_C
01S03

Mem_Stat_B
01S03

3 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 3 Mem_Stat_C
01S04

Mem_Stat_B
01S04

4 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 4 Mem_Stat_C
01S05

Mem_Stat_B
01S05

5 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 5 Mem_Stat_C
01S06

Mem_Stat_B
01S06

6 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 6 Mem_Stat_C
01S07

Mem_Stat_B
01S07

7 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 7 Mem_Stat_C
01S08

Mem_Stat_B
01S08

8 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 8 Mem_Stat_C
01S09

Mem_Stat_B
01S09

9 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 9 Mem_Stat_C
01S10

Mem_Stat_B
01S10

10 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 10 Mem_Stat_C
01S11

Mem_Stat_B
01S11

11 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 11 Mem_Stat_C
01S12

Mem_Stat_B
01S12

12 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 12 Mem_Stat_C
01S13

Mem_Stat_B
01S13

13 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 13 Mem_Stat_C
01S14

Mem_Stat_B
01S14

14 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 14 Mem_Stat_C
01S15

Mem_Stat_B
01S15

Table Continued

Sensor LUN 1 311



15 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 15 Mem_Stat_C
01S16

Mem_Stat_B
01S16

16 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 16 Mem_Stat_C
02S01

Mem_Stat_B
02S01

17 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 17 Mem_Stat_C
02S02

Mem_Stat_B
02S02

18 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 18 Mem_Stat_C
02S03

Mem_Stat_B
02S03

19 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 19 Mem_Stat_C
02S04

Mem_Stat_B
02S04

20 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 20 Mem_Stat_C
02S05

Mem_Stat_B
02S05

21 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 21 Mem_Stat_C
02S06

Mem_Stat_B
02S06

22 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 22 Mem_Stat_C
02S07

Mem_Stat_B
02S07

23 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 23 Mem_Stat_C
02S08

Mem_Stat_B
02S08

24 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 24 Mem_Stat_C
02S09

Mem_Stat_B
02S09

25 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 25 Mem_Stat_C
02S10

Mem_Stat_B
02S10

26 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 26 Mem_Stat_C
02S11

Mem_Stat_B
02S11

27 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 27 Mem_Stat_C
02S12

Mem_Stat_B
02S12

28 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 28 Mem_Stat_C
02S13

Mem_Stat_B
02S13

29 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 29 Mem_Stat_C
02S14

Mem_Stat_B
02S14

30 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 30 Mem_Stat_C
02S15

Mem_Stat_B
02S15

31 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 31 Mem_Stat_C
02S16

Mem_Stat_B
02S16

32 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 32 Mem_Stat_C
03S01

Mem_Stat_B
03S01

33 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 33 Mem_Stat_C
03S02

Mem_Stat_B
03S02

34 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 34 Mem_Stat_C
03S03

Mem_Stat_B
03S03

35 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 35 Mem_Stat_C
03S04

Mem_Stat_B
03S04

36 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 36 Mem_Stat_C
03S05

Mem_Stat_B
03S05

Table Continued

312 Standard sensor list



37 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 37 Mem_Stat_C
03S06

Mem_Stat_B
03S06

38 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 38 Mem_Stat_C
03S07

Mem_Stat_B
03S07

39 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 39 Mem_Stat_C
03S08

Mem_Stat_B
03S08

40 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 40 Mem_Stat_C
03S09

Mem_Stat_B
03S09

41 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 41 Mem_Stat_C
03S10

Mem_Stat_B
03S10

42 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 42 Mem_Stat_C
03S11

Mem_Stat_B
03S11

43 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 43 Mem_Stat_C
03S12

Mem_Stat_B
03S12

44 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 44 Mem_Stat_C
03S13

Mem_Stat_B
03S13

45 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 45 Mem_Stat_C
03S14

Mem_Stat_B
03S14

46 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 46 Mem_Stat_C
03S15

Mem_Stat_B
03S15

47 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 47 Mem_Stat_C
03S16

Mem_Stat_B
03S16

48 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 48 Mem_Stat_C
04S01

Mem_Stat_B
04S01

49 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 49 Mem_Stat_C
04S02

Mem_Stat_B
04S02

50 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 50 Mem_Stat_C
04S03

Mem_Stat_B
04S03

51 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 51 Mem_Stat_C
04S04

Mem_Stat_B
04S04

52 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 52 Mem_Stat_C
04S05

Mem_Stat_B
04S05

53 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 53 Mem_Stat_C
04S06

Mem_Stat_B
04S06

54 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 54 Mem_Stat_C
04S07

Mem_Stat_B
04S07

55 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 55 Mem_Stat_C
04S08

Mem_Stat_B
04S08

56 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 56 Mem_Stat_C
04S09

Mem_Stat_B
04S09

57 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 57 Mem_Stat_C
04S10

Mem_Stat_B
04S10

58 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 58 Mem_Stat_C
04S11

Mem_Stat_B
04S11

Table Continued

Standard sensor list 313



59 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 59 Mem_Stat_C
04S12

Mem_Stat_B
04S12

60 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 60 Mem_Stat_C
04S13

Mem_Stat_B
04S13

61 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 61 Mem_Stat_C
04S14

Mem_Stat_B
04S14

62 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 62 Mem_Stat_C
04S15

Mem_Stat_B
04S15

63 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 63 Mem_Stat_C
04S16

Mem_Stat_B
04S16

64 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 64 Mem_Stat_C
05S01

Mem_Stat_B
05S01

65 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 65 Mem_Stat_C
05S02

Mem_Stat_B
05S02

66 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 66 Mem_Stat_C
05S03

Mem_Stat_B
05S03

67 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 67 Mem_Stat_C
05S04

Mem_Stat_B
05S04

68 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 68 Mem_Stat_C
05S05

Mem_Stat_B
05S05

69 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 69 Mem_Stat_C
05S06

Mem_Stat_B
05S06

70 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 70 Mem_Stat_C
05S07

Mem_Stat_B
05S07

71 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 71 Mem_Stat_C
05S08

Mem_Stat_B
05S08

72 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 72 Mem_Stat_C
05S09

Mem_Stat_B
05S09

73 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 73 Mem_Stat_C
05S10

Mem_Stat_B
05S10

74 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 74 Mem_Stat_C
05S11

Mem_Stat_B
05S11

75 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 75 Mem_Stat_C
05S12

Mem_Stat_B
05S12

76 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 76 Mem_Stat_C
05S13

Mem_Stat_B
05S13

77 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 77 Mem_Stat_C
05S14

Mem_Stat_B
05S14

78 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 78 Mem_Stat_C
05S15

Mem_Stat_B
05S15

79 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 79 Mem_Stat_C
05S16

Mem_Stat_B
05S16

80 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 80 Mem_Stat_C
06S01

Mem_Stat_B
06S01

Table Continued

314 Standard sensor list



81 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 81 Mem_Stat_C
06S02

Mem_Stat_B
06S02

82 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 82 Mem_Stat_C
06S03

Mem_Stat_B
06S03

83 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 83 Mem_Stat_C
06S04

Mem_Stat_B
06S04

84 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 84 Mem_Stat_C
06S05

Mem_Stat_B
06S05

85 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 85 Mem_Stat_C
06S06

Mem_Stat_B
06S06

86 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 86 Mem_Stat_C
06S07

Mem_Stat_B
06S07

87 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 87 Mem_Stat_C
06S08

Mem_Stat_B
06S08

88 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 88 Mem_Stat_C
06S09

Mem_Stat_B
06S09

89 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 89 Mem_Stat_C
06S10

Mem_Stat_B
06S10

90 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 90 Mem_Stat_C
06S11

Mem_Stat_B
06S11

91 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 91 Mem_Stat_C
06S12

Mem_Stat_B
06S12

92 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 92 Mem_Stat_C
06S13

Mem_Stat_B
06S13

93 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 93 Mem_Stat_C
06S14

Mem_Stat_B
06S14

94 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 94 Mem_Stat_C
06S15

Mem_Stat_B
06S15

95 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 95 Mem_Stat_C
06S16

Mem_Stat_B
06S16

96 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 96 Mem_Stat_C
07S01

Mem_Stat_B
07S01

97 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 97 Mem_Stat_C
07S02

Mem_Stat_B
07S02

98 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 98 Mem_Stat_C
07S03

Mem_Stat_B
07S03

99 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 99 Mem_Stat_C
07S04

Mem_Stat_B
07S04

100 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 100 Mem_Stat_C
07S05

Mem_Stat_B
07S05

101 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 101 Mem_Stat_C
07S06

Mem_Stat_B
07S06

102 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 102 Mem_Stat_C
07S07

Mem_Stat_B
07S07

Table Continued

Standard sensor list 315



103 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 103 Mem_Stat_C
07S08

Mem_Stat_B
07S08

104 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 104 Mem_Stat_C
07S09

Mem_Stat_B
07S09

105 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 105 Mem_Stat_C
07S10

Mem_Stat_B
07S10

106 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 106 Mem_Stat_C
07S11

Mem_Stat_B
07S11

107 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 107 Mem_Stat_C
07S12

Mem_Stat_B
07S12

108 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 108 Mem_Stat_C
07S13

Mem_Stat_B
07S13

109 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 109 Mem_Stat_C
07S14

Mem_Stat_B
07S14

110 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 110 Mem_Stat_C
07S15

Mem_Stat_B
07S15

111 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 111 Mem_Stat_C
07S16

Mem_Stat_B
07S16

112 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 112 Mem_Stat_C
08S01

Mem_Stat_B
08S01

113 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 113 Mem_Stat_C
08S02

Mem_Stat_B
08S02

114 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 114 Mem_Stat_C
08S03

Mem_Stat_B
08S03

115 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 115 Mem_Stat_C
08S04

Mem_Stat_B
08S04

116 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 116 Mem_Stat_C
08S05

Mem_Stat_B
08S05

117 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 117 Mem_Stat_C
08S06

Mem_Stat_B
08S06

118 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 118 Mem_Stat_C
08S07

Mem_Stat_B
08S07

119 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 119 Mem_Stat_C
08S08

Mem_Stat_B
08S08

120 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 120 Mem_Stat_C
08S09

Mem_Stat_B
08S09

121 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 121 Mem_Stat_C
08S10

Mem_Stat_B
08S10

122 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 122 Mem_Stat_C
08S11

Mem_Stat_B
08S11

123 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 123 Mem_Stat_C
08S12

Mem_Stat_B
08S12

124 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 124 Mem_Stat_C
08S13

Mem_Stat_B
08S13

Table Continued

316 Standard sensor list



125 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 125 Mem_Stat_C
08S14

Mem_Stat_B
08S14

126 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 126 Mem_Stat_C
08S15

Mem_Stat_B
08S15

127 0x6F Sensor-
specific

0x0C Memory 0x20 Memory 127 Mem_Stat_C
08S16

Mem_Stat_B
08S16

FRU LUN 0
FRU
ID

Device
Type

Modifier Entity
ID

Instance Old
Name

Alternate

C-class Name

0 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x07
System
Board

1 N/A BladeFRU

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x03
Proces
sor

1 CPU 1

17 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x03
Proces
sor

2 CPU 2

18 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x03
Proces
sor

3 CPU 3

Table Continued

FRU LUN 0 317



19 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x03
Proces
sor

4 CPU 4

20 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x03
Proces
sor

5 CPU 5

21 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x03
Proces
sor

6 CPU 6

22 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x03
Proces
sor

7 CPU 7

23 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x03
Proces
sor

8 CPU 8

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Table Continued

318 Standard sensor list



49

50

51

52

53

54

55

56

57

58

59

60 Battery

61 Battery

62 Battery

63 Battery

64 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x2C
I/O
module

1 Etherne
t Adptr

BLOM DC01

65 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x2C
I/O
module

2 Etherne
t Adptr

BLOM DC02

66 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x31
PCI X -
Bus

4 Mezz4 Mezz4

67 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x31
PCI X -
Bus

5 Mezz5 Mezz5

68 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x31
PCI X -
Bus

6 Mezz6 Mezz6

69 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x31
PCI X -
Bus

7 Mezz7 Mezz7

70 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x31
PCI X -
Bus

8 Mezz8 Mezz8

71 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x2C
I/O
module

3 Etherne
t Adptr

BLOM DC03

72 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x2C
I/O
module

4 Etherne
t Adptr

BLOM DC04

Table Continued

Standard sensor list 319



73 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x31
PCI X -
Bus

9 Mezz9 Mezz9

74 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x31
PCI X -
Bus

3 Mezz3 Mezz3

75 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x31
PCI X -
Bus

10 Mezz10 Mezz10

76 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x31
PCI X -
Bus

2 Mezz2 Mezz2

77 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x31
PCI X -
Bus

11 Mezz11 Mezz11

78 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x31
PCI X -
Bus

1 Mezz1 Mezz1

79 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x31
PCI X -
Bus

12 Mezz12 Mezz12

80 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x31
PCI X -
Bus

13 Mezz13 Mezz13

81 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x31
PCI X -
Bus

14 Mezz14 Mezz14

82 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x31
PCI X -
Bus

15 Mezz15 Mezz15

83 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x31
PCI X -
Bus

16 Mezz16 Mezz16

84 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x31
PCI X -
Bus

17 Mezz17 Mezz17

85 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x31
PCI X -
Bus

18 Mezz18 Mezz18

86

87

88

89

90

91

Table Continued

320 Standard sensor list



92

93

94

95 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x31
PCI X -
Bus

1 Mezz1P
assThru
FRU

96 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x31
PCI X -
Bus

2 Mezz2P
assThru
FRU

97 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x31
PCI X -
Bus

1 PCI-
E<X>Ri
serFRU
/
MXM<X
>RiserF
RU

98 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x31
PCI X -
Bus

2 PCI-
E<X>Ri
serFRU
/
MXM<X
>RiserF
RU

99 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x31
PCI X -
Bus

3 PCI-
E<X>Ri
serFRU
/
MXM<X
>RiserF
RU

100 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x31
PCI X -
Bus

4 PCI-
E<X>Ri
serFRU
/
MXM<X
>RiserF
RU

101 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x31
PCI X -
Bus

5 PCI-
E<X>Ri
serFRU
/
MXM<X
>RiserF
RU

Table Continued

Standard sensor list 321



102 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x31
PCI X -
Bus

6 PCI-
E<X>Ri
serFRU
/
MXM<X
>RiserF
RU

103 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x31
PCI X -
Bus

7 PCI-
E<X>Ri
serFRU
/
MXM<X
>RiserF
RU

104 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x31
PCI X -
Bus

8 PCI-
E<X>Ri
serFRU
/
MXM<X
>RiserF
RU

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

Table Continued

322 Standard sensor list



126

127

128 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x15
Drive
Backpl
ane

1 Stor
Bkplane
1A

129 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x15
Drive
Backpl
ane

1 Stor
Bkplane
1B

130 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x15
Drive
Backpl
ane

2 Stor
Bkplane
2A

131 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x15
Drive
Backpl
ane

2 Stor
Bkplane
2B

132 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x15
Drive
Backpl
ane

3 Stor
Bkplane
3A

133 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x15
Drive
Backpl
ane

3 Stor
Bkplane
3B

134 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x15
Drive
Backpl
ane

4 Stor
Bkplane
4A

135 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x15
Drive
Backpl
ane

4 Stor
Bkplane
4B

136 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x15
Drive
Backpl
ane

5 Stor
Bkplane
5A

137 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x15
Drive
Backpl
ane

5 Stor
Bkplane
5B

138 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x15
Drive
Backpl
ane

6 Stor
Bkplane
6A

Table Continued

Standard sensor list 323



139 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x15
Drive
Backpl
ane

6 Stor
Bkplane
6B

140 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x15
Drive
Backpl
ane

7 Stor
Bkplane
7A

141 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x15
Drive
Backpl
ane

7 Stor
Bkplane
7B

142 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x15
Drive
Backpl
ane

8 Stor
Bkplane
8A

143 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x15
Drive
Backpl
ane

8 Stor
Bkplane
8B

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

Table Continued

324 Standard sensor list



165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

Table Continued

Standard sensor list 325



201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

Table Continued

326 Standard sensor list



237

238

239

240

241

242

243

244

245

246 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x06
SysMg
mtMod

1 BMC
Controll
er

N/A

247 0x10 MC
FRU
Device

0x00
IPMI
FRU

0x22
BIOS

1 MB
BIOS

N/A

248

249

250

251

252

253

254

255 Reserv
ed

FRU LUN 1
FRU
ID

Device
Type

Modifier Entity
ID

Instanc
e

Name

0 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

1 MEM_FRU_C01S01

1 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

2 MEM_FRU_C01S02

2 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

3 MEM_FRU_C01S03

3 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

4 MEM_FRU_C01S04

Table Continued

FRU LUN 1 327



4 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

5 MEM_FRU_C01S05

5 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

6 MEM_FRU_C01S06

6 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

7 MEM_FRU_C01S07

7 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

8 MEM_FRU_C01S08

8 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

9 MEM_FRU_C01S09

9 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

10 MEM_FRU_C01S10

10 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

11 MEM_FRU_C01S11

11 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

12 MEM_FRU_C01S12

12 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

13 MEM_FRU_C01S13

13 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

14 MEM_FRU_C01S14

14 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

15 MEM_FRU_C01S15

15 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

16 MEM_FRU_C01S16

16 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

17 MEM_FRU_C02S01

17 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

18 MEM_FRU_C02S02

18 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

19 MEM_FRU_C02S03

Table Continued

328 Standard sensor list



19 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

20 MEM_FRU_C02S04

20 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

21 MEM_FRU_C02S05

21 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

22 MEM_FRU_C02S06

22 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

23 MEM_FRU_C02S07

23 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

24 MEM_FRU_C02S08

24 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

25 MEM_FRU_C02S09

25 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

26 MEM_FRU_C02S10

26 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

27 MEM_FRU_C02S11

27 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

28 MEM_FRU_C02S12

28 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

29 MEM_FRU_C02S13

29 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

30 MEM_FRU_C02S14

30 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

31 MEM_FRU_C02S15

31 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

32 MEM_FRU_C02S16

32 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

33 MEM_FRU_C03S01

33 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

34 MEM_FRU_C03S02

Table Continued

Standard sensor list 329



34 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

35 MEM_FRU_C03S03

35 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

36 MEM_FRU_C03S04

36 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

37 MEM_FRU_C03S05

37 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

38 MEM_FRU_C03S06

38 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

39 MEM_FRU_C03S07

39 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

40 MEM_FRU_C03S08

40 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

41 MEM_FRU_C03S09

41 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

42 MEM_FRU_C03S10

42 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

43 MEM_FRU_C03S11

43 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

44 MEM_FRU_C03S12

44 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

45 MEM_FRU_C03S13

45 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

46 MEM_FRU_C03S14

46 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

47 MEM_FRU_C03S15

47 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

48 MEM_FRU_C03S16

48 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

49 MEM_FRU_C04S01

Table Continued

330 Standard sensor list



49 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

50 MEM_FRU_C04S02

50 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

51 MEM_FRU_C04S03

51 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

52 MEM_FRU_C04S04

52 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

53 MEM_FRU_C04S05

53 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

54 MEM_FRU_C04S06

54 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

55 MEM_FRU_C04S07

55 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

56 MEM_FRU_C04S08

56 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

57 MEM_FRU_C04S09

57 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

58 MEM_FRU_C04S10

58 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

59 MEM_FRU_C04S11

59 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

60 MEM_FRU_C04S12

60 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

61 MEM_FRU_C04S13

61 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

62 MEM_FRU_C04S14

62 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

63 MEM_FRU_C04S15

63 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

64 MEM_FRU_C04S16

Table Continued

Standard sensor list 331



64 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

65 MEM_FRU_C05S01

65 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

66 MEM_FRU_C05S02

66 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

67 MEM_FRU_C05S03

67 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

68 MEM_FRU_C05S04

68 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

69 MEM_FRU_C05S05

69 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

70 MEM_FRU_C05S06

70 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

71 MEM_FRU_C05S07

71 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

72 MEM_FRU_C05S08

72 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

73 MEM_FRU_C05S09

73 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

74 MEM_FRU_C05S10

74 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

75 MEM_FRU_C05S11

75 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

76 MEM_FRU_C05S12

76 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

77 MEM_FRU_C05S13

77 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

78 MEM_FRU_C05S14

78 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

79 MEM_FRU_C05S15

Table Continued

332 Standard sensor list



79 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

80 MEM_FRU_C05S16

80 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

81 MEM_FRU_C06S01

81 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

82 MEM_FRU_C06S02

82 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

83 MEM_FRU_C06S03

83 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

84 MEM_FRU_C06S04

84 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

85 MEM_FRU_C06S05

85 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

86 MEM_FRU_C06S06

86 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

87 MEM_FRU_C06S07

87 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

88 MEM_FRU_C06S08

88 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

89 MEM_FRU_C06S09

89 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

90 MEM_FRU_C06S10

90 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

91 MEM_FRU_C06S11

91 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

92 MEM_FRU_C06S12

92 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

93 MEM_FRU_C06S13

93 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

94 MEM_FRU_C06S14

Table Continued

Standard sensor list 333



94 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

95 MEM_FRU_C06S15

95 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

96 MEM_FRU_C06S16

96 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

97 MEM_FRU_C07S01

97 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

98 MEM_FRU_C07S02

98 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

99 MEM_FRU_C07S03

99 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

100 MEM_FRU_C07S04

100 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

101 MEM_FRU_C07S05

101 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

102 MEM_FRU_C07S06

102 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

103 MEM_FRU_C07S07

103 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

104 MEM_FRU_C07S08

104 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

105 MEM_FRU_C07S09

105 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

106 MEM_FRU_C07S10

106 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

107 MEM_FRU_C07S11

107 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

108 MEM_FRU_C07S12

108 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

109 MEM_FRU_C07S13

Table Continued

334 Standard sensor list



109 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

110 MEM_FRU_C07S14

110 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

111 MEM_FRU_C07S15

111 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

112 MEM_FRU_C07S16

112 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

113 MEM_FRU_C08S01

113 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

114 MEM_FRU_C08S02

114 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

115 MEM_FRU_C08S03

115 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

116 MEM_FRU_C08S04

116 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

117 MEM_FRU_C08S05

117 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

118 MEM_FRU_C08S06

118 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

119 MEM_FRU_C08S07

119 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

120 MEM_FRU_C08S08

120 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

121 MEM_FRU_C08S09

121 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

122 MEM_FRU_C08S10

122 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

123 MEM_FRU_C08S11

123 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

124 MEM_FRU_C08S12

Table Continued

Standard sensor list 335



124 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

125 MEM_FRU_C08S13

125 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

126 MEM_FRU_C08S14

126 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

127 MEM_FRU_C08S15

127 0x10 MC
FRU
Device

0x01
DIMM

0x20
Memory

128 MEM_FRU_C08S16

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

Table Continued

336 Standard sensor list



155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

Table Continued

Standard sensor list 337



191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

Table Continued

338 Standard sensor list



227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255 Reserved

Standard sensor list 339



ChassisMC Sensor LUN 0
Sensor
Number

ERC Old ERC Sensor
Type

Entity ID Logical
Container
Bit

Entity
Instance

Old Name New
Name

0 0x6F
Sensor-
specific

0x28
Manageme
nt
Subsystem
Health

0x17
System
Chassis

0 Enclosure
Status

1 0x01
Threshold

0x0A
Availability

0x04 Fan 0x1D
Cooling

1 FAN 1 Fan_Spee
d_01

2 0x08
Availability

0x04 Fan 0x1D
Cooling

1 Fan_Pres
_01

3 0x07
Severity

0x04 Fan 0x1D
Cooling

1 Fan_Stat_
01

4 0x01
Threshold

0x0A
Availability

0x04 Fan 0x1D
Cooling

2 FAN 2 Fan_Spee
d_02

5 0x08
Availability

0x04 Fan 0x1D
Cooling

2 Fan_Pres
_02

6 0x07
Severity

0x04 Fan 0x1D
Cooling

2 Fan_Stat_
02

7 0x01
Threshold

0x0A
Availability

0x04 Fan 0x1D
Cooling

3 FAN 3 Fan_Spee
d_03

8 0x08
Availability

0x04 Fan 0x1D
Cooling

3 Fan_Pres
_03

9 0x07
Severity

0x04 Fan 0x1D
Cooling

3 Fan_Stat_
03

10 0x01
Threshold

0x0A
Availability

0x04 Fan 0x1D
Cooling

4 FAN 4 Fan_Spee
d_04

11 0x08
Availability

0x04 Fan 0x1D
Cooling

4 Fan_Pres
_04

12 0x07
Severity

0x04 Fan 0x1D
Cooling

4 Fan_Stat_
04

13 0x01
Threshold

0x0A
Availability

0x04 Fan 0x1D
Cooling

5 FAN 5 Fan_Spee
d_05

14 0x08
Availability

0x04 Fan 0x1D
Cooling

5 Fan_Pres
_05

15 0x07
Severity

0x04 Fan 0x1D
Cooling

5 Fan_Stat_
05

16 0x01
Threshold

0x0A
Availability

0x04 Fan 0x1D
Cooling

6 FAN 6 Fan_Spee
d_06

17 0x08
Availability

0x04 Fan 0x1D
Cooling

6 Fan_Pres
_06

Table Continued

340  ChassisMC Sensor LUN 0



18 0x07
Severity

0x04 Fan 0x1D
Cooling

6 Fan_Stat_
06

19 0x01
Threshold

0x0A
Availability

0x04 Fan 0x1D
Cooling

7 FAN 7 Fan_Spee
d_07

20 0x08
Availability

0x04 Fan 0x1D
Cooling

7 Fan_Pres
_07

21 0x07
Severity

0x04 Fan 0x1D
Cooling

7 Fan_Stat_
07

22 0x01
Threshold

0x0A
Availability

0x04 Fan 0x1D
Cooling

8 FAN 8 Fan_Spee
d_08

23 0x08
Availability

0x04 Fan 0x1D
Cooling

8 Fan_Pres
_08

24 0x07
Severity

0x04 Fan 0x1D
Cooling

8 Fan_Stat_
08

25 0x01
Threshold

0x0A
Availability

0x04 Fan 0x1D
Cooling

9 FAN 9 Fan_Spee
d_09

26 0x08
Availability

0x04 Fan 0x1D
Cooling

9 Fan_Pres
_09

27 0x07
Severity

0x04 Fan 0x1D
Cooling

9 Fan_Stat_
09

28 0x01
Threshold

0x0A
Availability

0x04 Fan 0x1D
Cooling

10 FAN 10 Fan_Spee
d_10

29 0x08
Availability

0x04 Fan 0x1D
Cooling

10 Fan_Pres
_10

30 0x07
Severity

0x04 Fan 0x1D
Cooling

10 Fan_Stat_
10

31 0x01
Threshold

0x0A
Availability

0x04 Fan 0x1D
Cooling

11 FAN 11 Fan_Spee
d_11

32 0x08
Availability

0x04 Fan 0x1D
Cooling

11 Fan_Pres
_11

33 0x07
Severity

0x04 Fan 0x1D
Cooling

11 Fan_Stat_
11

34 0x01
Threshold

0x0A
Availability

0x04 Fan 0x1D
Cooling

12 FAN 12 Fan_Spee
d_12

35 0x08
Availability

0x04 Fan 0x1D
Cooling

12 Fan_Pres
_12

36 0x07
Severity

0x04 Fan 0x1D
Cooling

12 Fan_Stat_
12

37 0x01
Threshold

0x0A
Availability

0x04 Fan 0x1D
Cooling

13 FAN 13 Fan_Spee
d_13

38 0x08
Availability

0x04 Fan 0x1D
Cooling

13 Fan_Pres
_13

39 0x07
Severity

0x04 Fan 0x1D
Cooling

13 Fan_Stat_
13

Table Continued

Standard sensor list 341



40 0x01
Threshold

0x0A
Availability

0x04 Fan 0x1D
Cooling

14 FAN 14 Fan_Spee
d_14

41 0x08
Availability

0x04 Fan 0x1D
Cooling

14 Fan_Pres
_14

42 0x07
Severity

0x04 Fan 0x1D
Cooling

14 Fan_Stat_
14

43 0x01
Threshold

0x0A
Availability

0x04 Fan 0x1D
Cooling

15 FAN 15 Fan_Spee
d_15

44 0x08
Availability

0x04 Fan 0x1D
Cooling

15 Fan_Pres
_15

45 0x07
Severity

0x04 Fan 0x1D
Cooling

15 Fan_Stat_
15

46 0x01
Threshold

0x0A
Availability

0x04 Fan 0x1D
Cooling

16 FAN 16 Fan_Spee
d_16

47 0x08
Availability

0x04 Fan 0x1D
Cooling

16 Fan_Pres
_16

48 0x07
Severity

0x04 Fan 0x1D
Cooling

16 Fan_Stat_
16

49 0x0B
Redundan
cy

0x04 Fan 0x1E
Cooling
Domain

1 Fans Fan_Stat_
G01

50 0x6F
Sensor-
specific

0x08
Power
Supply

0x0A
Power
Supply

1 Power
Supply 1

PS_Stat_
01

51 0x6F
Sensor-
specific

0x08
Power
Supply

0x0A
Power
Supply

2 Power
Supply 2

PS_Stat_
02

52 0x6F
Sensor-
specific

0x08
Power
Supply

0x0A
Power
Supply

3 Power
Supply 3

PS_Stat_
03

53 0x6F
Sensor-
specific

0x08
Power
Supply

0x0A
Power
Supply

4 Power
Supply 4

PS_Stat_
04

54 0x6F
Sensor-
specific

0x08
Power
Supply

0x0A
Power
Supply

5 Power
Supply 5

PS_Stat_
05

55 0x6F
Sensor-
specific

0x08
Power
Supply

0x0A
Power
Supply

6 Power
Supply 6

PS_Stat_
06

56 0x6F
Sensor-
specific

0x08
Power
Supply

0x0A
Power
Supply

7 Power
Supply 7

PS_Stat_
07

57 0x6F
Sensor-
specific

0x08
Power
Supply

0x0A
Power
Supply

8 Power
Supply 8

PS_Stat_
08

Table Continued

342 Standard sensor list



58 0x01
Threshold

0x0B
Other

0x0A
Power
Supply

1 Power
Supply 1

PS_Watt_
01

59 0x01
Threshold

0x0B
Other

0x0A
Power
Supply

2 Power
Supply 2

PS_Watt_
02

60 0x01
Threshold

0x0B
Other

0x0A
Power
Supply

3 Power
Supply 3

PS_Watt_
03

61 0x01
Threshold

0x0B
Other

0x0A
Power
Supply

4 Power
Supply 4

PS_Watt_
04

62 0x01
Threshold

0x0B
Other

0x0A
Power
Supply

5 Power
Supply 5

PS_Watt_
05

63 0x01
Threshold

0x0B
Other

0x0A
Power
Supply

6 Power
Supply 6

PS_Watt_
06

64 0x01
Threshold

0x0B
Other

0x0A
Power
Supply

7 Power
Supply 7

PS_Watt_
07

65 0x01
Threshold

0x0B
Other

0x0A
Power
Supply

8 Power
Supply 8

PS_Watt_
08

66 0x0B
Redundan
cy

0x08
Power
Supply

0x13
Power
Domain

1 Power
Supplies

PS_Stat_
G01

67 0x01
Threshold

0x01
Temperatu
re

0x0A
Power
Supply

1 XX-P/S 1 PS_Temp
_01

68 0x01
Threshold

0x01
Temperatu
re

0x0A
Power
Supply

2 XX-P/S 2 PS_Temp
_02

69 0x01
Threshold

0x01
Temperatu
re

0x0A
Power
Supply

3 XX-P/S 3 PS_Temp
_03

70 0x01
Threshold

0x01
Temperatu
re

0x0A
Power
Supply

4 XX-P/S 4 PS_Temp
_04

71 0x01
Threshold

0x01
Temperatu
re

0x0A
Power
Supply

5 XX-P/S 5 PS_Temp
_05

72 0x01
Threshold

0x01
Temperatu
re

0x0A
Power
Supply

6 XX-P/S 6 PS_Temp
_06

Table Continued

Standard sensor list 343



73 0x01
Threshold

0x01
Temperatu
re

0x0A
Power
Supply

7 XX-P/S 7 PS_Temp
_07

74 0x01
Threshold

0x01
Temperatu
re

0x0A
Power
Supply

8 XX-P/S 8 PS_Temp
_08

75 0x01
Threshold

0x01
Temperatu
re

0x0A
Power
Supply

1 XX-P/S 1
Inlet

PSInlet_T
emp_01

76 0x01
Threshold

0x01
Temperatu
re

0x0A
Power
Supply

2 XX-P/S 2
Inlet

PSInlet_T
emp_02

77 0x01
Threshold

0x01
Temperatu
re

0x0A
Power
Supply

3 XX-P/S 3
Inlet

PSInlet_T
emp_03

78 0x01
Threshold

0x01
Temperatu
re

0x0A
Power
Supply

4 XX-P/S 4
Inlet

PSInlet_T
emp_04

79 0x01
Threshold

0x01
Temperatu
re

0x0A
Power
Supply

5 XX-P/S 5
Inlet

PSInlet_T
emp_05

80 0x01
Threshold

0x01
Temperatu
re

0x0A
Power
Supply

6 XX-P/S 6
Inlet

PSInlet_T
emp_06

81 0x01
Threshold

0x01
Temperatu
re

0x0A
Power
Supply

7 XX-P/S 7
Inlet

PSInlet_T
emp_07

82 0x01
Threshold

0x01
Temperatu
re

0x0A
Power
Supply

8 XX-P/S 8
Inlet

PSInlet_T
emp_08

99

100

101

102

103

104

105

106

107

108

109

110

111

Table Continued

344 Standard sensor list



112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Table Continued

Standard sensor list 345



148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

Table Continued

346 Standard sensor list



184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

Table Continued

Standard sensor list 347



220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

348 Standard sensor list



RAIDMC Sensor LUN 0
Senso
r
Numb
er

ERC Senso
r Type

Enti
ty ID

Entity
Instance

Old
Name

New Name

2 0x6F
Sensor-
specific

0x0D
Drive
Slot

0x04
Disk

96 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

3 0x6F
Sensor-
specific

0x0D
Drive
Slot

0x04
Disk

97 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

4 0x6F
Sensor-
specific

0x0D
Drive
Slot

0x04
Disk

98 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

5 0x6F
Sensor-
specific

0x0D
Drive
Slot

0x04
Disk

99 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

6 0x6F
Sensor-
specific

0x0D
Drive
Slot

0x04
Disk

100 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

7 0x6F
Sensor-
specific

0x0D
Drive
Slot

0x04
Disk

101 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

8 0x6F
Sensor-
specific

0x0D
Drive
Slot

0x04
Disk

102 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

9 0x6F
Sensor-
specific

0x0D
Drive
Slot

0x04
Disk

103 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

10 0x6F
Sensor-
specific

0x0D
Drive
Slot

0x04
Disk

104 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

11 0x6F
Sensor-
specific

0x0D
Drive
Slot

0x04
Disk

105 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

12 0x6F
Sensor-
specific

0x0D
Drive
Slot

0x04
Disk

106 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

13 0x6F
Sensor-
specific

0x0D
Drive
Slot

0x04
Disk

107 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

14 0x6F
Sensor-
specific

0x0D
Drive
Slot

0x04
Disk

108 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

Table Continued

RAIDMC Sensor LUN 0 349



15 0x6F
Sensor-
specific

0x0D
Drive
Slot

0x04
Disk

109 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

16 0x6F
Sensor-
specific

0x0D
Drive
Slot

0x04
Disk

110 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

17 0x6F
Sensor-
specific

0x0D
Drive
Slot

0x04
Disk

111 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

18 0x6F
Sensor-
specific

0x0D
Drive
Slot

0x04
Disk

112 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

19 0x6F
Sensor-
specific

0x0D
Drive
Slot

0x04
Disk

113 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

20 0x6F
Sensor-
specific

0x0D
Drive
Slot

0x04
Disk

114 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

21 0x6F
Sensor-
specific

0x0D
Drive
Slot

0x04
Disk

115 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

22 0x6F
Sensor-
specific

0x0D
Drive
Slot

0x04
Disk

116 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

23 0x6F
Sensor-
specific

0x0D
Drive
Slot

0x04
Disk

117 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

24 0x6F
Sensor-
specific

0x0D
Drive
Slot

0x04
Disk

118 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

25 0x6F
Sensor-
specific

0x0D
Drive
Slot

0x04
Disk

119 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

26 0x6F
Sensor-
specific

0x0D
Drive
Slot

0x04
Disk

120 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

27 0x6F
Sensor-
specific

0x0D
Drive
Slot

0x04
Disk

121 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

28 0x6F
Sensor-
specific

0x0D
Drive
Slot

0x04
Disk

122 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

29 0x6F
Sensor-
specific

0x0D
Drive
Slot

0x04
Disk

123 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

Table Continued

350 Standard sensor list



30 0x6F
Sensor-
specific

0x0D
Drive
Slot

0x04
Disk

124 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

31 0x6F
Sensor-
specific

0x0D
Drive
Slot

0x04
Disk

125 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

32 0x6F
Sensor-
specific

0x0D
Drive
Slot

0x04
Disk

126 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

33 0x6F
Sensor-
specific

0x0D
Drive
Slot

0x04
Disk

127 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

34 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
0
OE
M
Disk
1

96 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

35 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
0
OE
M
Disk
1

97 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

36 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
0
OE
M
Disk
1

98 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

37 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
0
OE
M
Disk
1

99 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

38 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
0
OE
M
Disk
1

100 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

39 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
0
OE
M
Disk
1

101 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

Table Continued

Standard sensor list 351



40 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
0
OE
M
Disk
1

102 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

41 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
0
OE
M
Disk
1

103 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

42 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
0
OE
M
Disk
1

104 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

43 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
0
OE
M
Disk
1

105 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

44 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
0
OE
M
Disk
1

106 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

45 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
0
OE
M
Disk
1

107 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

46 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
0
OE
M
Disk
1

108 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

47 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
0
OE
M
Disk
1

109 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

Table Continued

352 Standard sensor list



48 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
0
OE
M
Disk
1

110 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

49 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
0
OE
M
Disk
1

111 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

50 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
0
OE
M
Disk
1

112 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

51 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
0
OE
M
Disk
1

113 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

52 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
0
OE
M
Disk
1

114 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

53 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
0
OE
M
Disk
1

115 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

54 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
0
OE
M
Disk
1

116 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

55 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
0
OE
M
Disk
1

117 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

Table Continued

Standard sensor list 353



56 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
0
OE
M
Disk
1

118 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

57 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
0
OE
M
Disk
1

119 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

58 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
0
OE
M
Disk
1

120 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

59 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
0
OE
M
Disk
1

121 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

60 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
0
OE
M
Disk
1

122 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

61 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
0
OE
M
Disk
1

123 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

62 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
0
OE
M
Disk
1

124 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

63 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
0
OE
M
Disk
1

125 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

Table Continued

354 Standard sensor list



64 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
0
OE
M
Disk
1

126 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

65 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
0
OE
M
Disk
1

127 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

66 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
1
OE
M
Disk
2

96 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

67 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
1
OE
M
Disk
2

97 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

68 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
1
OE
M
Disk
2

98 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

69 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
1
OE
M
Disk
2

99 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

70 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
1
OE
M
Disk
2

100 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

71 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
1
OE
M
Disk
2

101 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

Table Continued

Standard sensor list 355



72 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
1
OE
M
Disk
2

102 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

73 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
1
OE
M
Disk
2

103 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

74 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
1
OE
M
Disk
2

104 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

75 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
1
OE
M
Disk
2

105 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

76 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
1
OE
M
Disk
2

106 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

77 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
1
OE
M
Disk
2

107 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

78 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
1
OE
M
Disk
2

108 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

79 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
1
OE
M
Disk
2

109 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

Table Continued

356 Standard sensor list



80 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
1
OE
M
Disk
2

110 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

81 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
1
OE
M
Disk
2

111 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

82 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
1
OE
M
Disk
2

112 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

83 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
1
OE
M
Disk
2

113 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

84 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
1
OE
M
Disk
2

114 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

85 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
1
OE
M
Disk
2

115 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

86 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
1
OE
M
Disk
2

116 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

87 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
1
OE
M
Disk
2

117 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

Table Continued

Standard sensor list 357



88 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
1
OE
M
Disk
2

118 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

89 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
1
OE
M
Disk
2

119 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

90 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
1
OE
M
Disk
2

120 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

91 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
1
OE
M
Disk
2

121 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

92 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
1
OE
M
Disk
2

122 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

93 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
1
OE
M
Disk
2

123 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

94 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
1
OE
M
Disk
2

124 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

95 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
1
OE
M
Disk
2

125 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

Table Continued

358 Standard sensor list



96 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
1
OE
M
Disk
2

126 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

97 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
1
OE
M
Disk
2

127 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

98 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
2
OE
M
Disk
3

96 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

99 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
2
OE
M
Disk
3

97 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

100 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
2
OE
M
Disk
3

98 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

101 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
2
OE
M
Disk
3

99 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

102 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
2
OE
M
Disk
3

100 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

103 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
2
OE
M
Disk
3

101 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

Table Continued

Standard sensor list 359



104 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
2
OE
M
Disk
3

102 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

105 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
2
OE
M
Disk
3

103 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

106 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
2
OE
M
Disk
3

104 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

107 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
2
OE
M
Disk
3

105 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

108 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
2
OE
M
Disk
3

106 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

109 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
2
OE
M
Disk
3

107 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

110 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
2
OE
M
Disk
3

108 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

111 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
2
OE
M
Disk
3

109 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

Table Continued

360 Standard sensor list



112 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
2
OE
M
Disk
3

110 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

113 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
2
OE
M
Disk
3

111 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

114 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
2
OE
M
Disk
3

112 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

115 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
2
OE
M
Disk
3

113 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

116 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
2
OE
M
Disk
3

114 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

117 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
2
OE
M
Disk
3

115 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

118 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
2
OE
M
Disk
3

116 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

119 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
2
OE
M
Disk
3

117 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

Table Continued

Standard sensor list 361



120 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
2
OE
M
Disk
3

118 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

121 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
2
OE
M
Disk
3

119 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

122 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
2
OE
M
Disk
3

120 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

123 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
2
OE
M
Disk
3

121 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

124 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
2
OE
M
Disk
3

122 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

125 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
2
OE
M
Disk
3

123 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

126 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
2
OE
M
Disk
3

124 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

127 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
2
OE
M
Disk
3

125 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

Table Continued

362 Standard sensor list



128 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
2
OE
M
Disk
3

126 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

129 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
2
OE
M
Disk
3

127 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

130 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
3
OE
M
Disk
4

96 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

131 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
3
OE
M
Disk
4

97 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

132 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
3
OE
M
Disk
4

98 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

133 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
3
OE
M
Disk
4

99 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

134 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
3
OE
M
Disk
4

100 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

135 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
3
OE
M
Disk
4

101 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

Table Continued

Standard sensor list 363



136 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
3
OE
M
Disk
4

102 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

137 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
3
OE
M
Disk
4

103 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

138 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
3
OE
M
Disk
4

104 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

139 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
3
OE
M
Disk
4

105 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

140 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
3
OE
M
Disk
4

106 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

141 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
3
OE
M
Disk
4

107 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

142 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
3
OE
M
Disk
4

108 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

143 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
3
OE
M
Disk
4

109 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

Table Continued

364 Standard sensor list



144 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
3
OE
M
Disk
4

110 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

145 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
3
OE
M
Disk
4

111 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

146 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
3
OE
M
Disk
4

112 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

147 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
3
OE
M
Disk
4

113 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

148 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
3
OE
M
Disk
4

114 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

149 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
3
OE
M
Disk
4

115 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

150 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
3
OE
M
Disk
4

116 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

151 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
3
OE
M
Disk
4

117 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

Table Continued

Standard sensor list 365



152 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
3
OE
M
Disk
4

118 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

153 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
3
OE
M
Disk
4

119 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

154 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
3
OE
M
Disk
4

120 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

155 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
3
OE
M
Disk
4

121 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

156 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
3
OE
M
Disk
4

122 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

157 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
3
OE
M
Disk
4

123 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

158 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
3
OE
M
Disk
4

124 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

159 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
3
OE
M
Disk
4

125 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

Table Continued

366 Standard sensor list



160 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
3
OE
M
Disk
4

126 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

161 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
3
OE
M
Disk
4

127 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

162 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
4
OE
M
Disk
5

96 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

163 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
4
OE
M
Disk
5

97 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

164 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
4
OE
M
Disk
5

98 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

165 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
4
OE
M
Disk
5

99 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

166 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
4
OE
M
Disk
5

100 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

167 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
4
OE
M
Disk
5

101 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

Table Continued

Standard sensor list 367



168 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
4
OE
M
Disk
5

102 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

169 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
4
OE
M
Disk
5

103 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

170 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
4
OE
M
Disk
5

104 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

171 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
4
OE
M
Disk
5

105 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

172 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
4
OE
M
Disk
5

106 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

173 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
4
OE
M
Disk
5

107 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

174 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
4
OE
M
Disk
5

108 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

175 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
4
OE
M
Disk
5

109 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

Table Continued

368 Standard sensor list



176 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
4
OE
M
Disk
5

110 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

177 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
4
OE
M
Disk
5

111 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

178 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
4
OE
M
Disk
5

112 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

179 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
4
OE
M
Disk
5

113 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

180 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
4
OE
M
Disk
5

114 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

181 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
4
OE
M
Disk
5

115 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

182 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
4
OE
M
Disk
5

116 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

183 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
4
OE
M
Disk
5

117 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

Table Continued

Standard sensor list 369



184 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
4
OE
M
Disk
5

118 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

185 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
4
OE
M
Disk
5

119 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

186 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
4
OE
M
Disk
5

120 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

187 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
4
OE
M
Disk
5

121 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

188 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
4
OE
M
Disk
5

122 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

189 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
4
OE
M
Disk
5

123 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

190 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
4
OE
M
Disk
5

124 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

191 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
4
OE
M
Disk
5

125 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

Table Continued

370 Standard sensor list



192 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
4
OE
M
Disk
5

126 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

193 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
4
OE
M
Disk
5

127 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

194 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

96 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

195 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

97 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

196 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

98 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

197 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

99 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

198 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

100 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

199 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

101 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

Table Continued

Standard sensor list 371



200 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

102 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

201 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

103 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

202 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

104 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

203 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

105 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

204 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

106 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

205 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

107 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

206 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

108 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

207 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

109 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

Table Continued

372 Standard sensor list



208 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

110 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

209 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

111 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

210 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

112 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

211 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

113 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

212 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

114 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

213 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

115 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

214 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

116 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

215 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

117 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

Table Continued

Standard sensor list 373



216 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

118 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

217 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

119 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

218 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

120 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

219 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

121 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

220 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

122 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

221 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

123 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

222 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

124 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

223 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

125 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

Table Continued

374 Standard sensor list



224 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

126 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

225 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

127 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

226 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

96 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

227 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

97 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

228 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

98 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

229 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

99 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

230 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

100 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

231 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

101 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

Table Continued

Standard sensor list 375



232 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

102 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

233 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

103 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

234 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

104 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

235 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

105 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

236 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

106 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

237 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

107 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

238 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

108 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

239 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

109 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

Table Continued

376 Standard sensor list



240 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

110 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

241 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

111 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

242 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

112 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

243 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

113 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

244 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

114 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

245 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

115 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

246 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

116 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

247 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

117 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

Table Continued

Standard sensor list 377



248 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

118 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

249 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

119 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

250 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

120 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

251 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

121 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

252 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

122 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

253 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

123 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

254 0x6F
Sensor-
specific

0x0D
Drive
Slot

0xD
5
OE
M
Disk
6

124 CN PX
Bay Z

Dr_Stat_XXY_BZZZ

378 Standard sensor list


	HPE iLO IPMI User Guide 
	Contents
	Introduction and key concepts
	Overview
	Key concepts
	Sensor Data Model
	Sensor owner identification
	Sensor type code
	Sensor Number and Naming Conventions
	System event log and event messages
	SDR repository

	FRU
	Standardized timers
	Watchdog timer
	POH counter
	Timestamp format

	iLO security modes
	Interoperability modes

	IPMI Topology
	Discovering managed entities using IPMITool
	IPMItool
	Out of band commands
	About interface types
	System Interface
	LANPlus Interface

	Features
	Events
	Inventory
	Chassis management
	Synopsis
	IPMItool Raw command syntax and example

	Command specification
	Standard command specification
	Global commands
	IPMI messaging support commands
	RMCP+ support and payload commands
	IPMI LAN Device Commands
	SOL commands
	MC watchdog timer commands
	Chassis commands
	Event commands
	PEF and Alerting commands
	SEL commands
	SDR repository device commands
	FRU inventory device commands
	Sensor Device Commands
	DCMI specific commands
	OEM commands


	IPMI Messaging and Interfaces
	System Interfaces
	Message interface description
	IPMI Messaging Interfaces

	Network function codes
	Completion codes
	Channel Model, Authentication, Sessions, and Users
	Channel numbers
	Logical channels
	Channel Privilege Levels
	Users & Password support
	IPMI sessions
	Session-less connections
	Session inactivity timeouts

	System interface messaging
	Bridging
	MC LUN 10b
	Send Message command with response tracking
	Bridged Request Example
	IPMB access via master write-read command
	MC IPMB LUNs
	Sending Messages to IPMB from system software

	Keyboard Controller Style Interface
	KCS Interface/MC LUNs
	KCS Interface-MC Request message format
	MC-KCS Interface Response Message format

	LAN Interface
	LAN alerting
	IPMI LAN interface
	Remote Management Control Protocol (RMCP)

	Serial Over LAN (SOL)

	Support and other resources
	Accessing Hewlett Packard Enterprise Support
	Accessing updates
	Hewlett Packard Enterprise authorized resellers
	Related information
	Websites
	Customer self repair
	Remote support
	Documentation feedback

	Command Assignments
	Verbose output examples
	DCTS (DCMI Conformance Test Suite)
	Steps to run the DCTS over LAN Interface
	Userconf.cfg
	DCMIConformance.exe

	Known Issues or Limitations
	Request with Responder’s Address as ‘0’

	OCMI Conformance Test Summary (DCMI v1.1 rev 2)

	Glossary
	Standard sensor list
	Sensor LUN O
	Sensor LUN 1
	FRU LUN 0
	FRU LUN 1
	ChassisMC Sensor LUN 0
	RAIDMC Sensor LUN 0


